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Abstract
Image-based mapping and localization offer six degrees of freedom
(6DoF) pose estimation for immersive applications. This is achieved
by matching, on a server, 2D visual features extracted from a mobile
device’s camera view and 3D features stored in a map. While ef-
fective, this process may lead to privacy breaches (e.g., exposure of
sensitive information captured by camera views). To tackle this cru-
cial issue, we present PIPE, a first-of-its-kind Privacy-preserving
Image-based 6DoF Pose Estimation system. The design of PIPE
is motivated by our key observation that uploading only a small
amount of features extracted from camera views for pose estimation
could reduce privacy leakage. However, trade-offs exist between
privacy preservation, system utility (i.e., pose estimation accuracy),
and system performance (e.g., end-to-end latency). To balance the
trade-offs, PIPE deliberately explores the feature-detection space
to reduce computation latency, designs an efficient feature ranking
method by judiciously utilizing map data, and optimizes feature
selection by jointly considering the features’ ranking and spatial
distribution to improve pose estimation accuracy. Moreover, we
construct a learning-based metric to quantify the extent of privacy
leakage in images. Our extensive performance evaluation reveals
that PIPE can effectively preserve privacy and reduce end-to-end
latency by up to 22.6%, while marginally affecting pose estimation
accuracy (e.g., as low as 2.7%).
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Computer vision; Computer vision;Mixed / augmented re-
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Figure 1: Reconstructed image (left) from extracted features
(middle) closely resembles the ground truth (right).

1 Introduction
Emerging immersive technologies, such as augmented and mixed
reality (AR/MR), heavily rely on innovations in image-based spatial
mapping [16, 89] and localization [86] for six degrees of freedom
(6DoF) pose estimation of mobile devices [45, 54, 67, 70]. Take
Google’s ARCore Geospatial [5] as an example. It extracts visual
features from street view images and generates a 3D spatial map of
the environment on a server. During localization, a mobile device
uploads its camera view (i.e., localization image) to the server, which
extracts the same type of 2D features as those in the 3D map and
performs feature matching to estimate the device’s 6DoF pose (i.e.,
position and orientation).

Image-based pose estimation raises privacy concerns for users,
as localization images may contain sensitive information, particu-
larly when used in home environments or confidential industrial
settings [47, 96]. A straightforward solution is to have mobile de-
vices extract visual features from localization images and send
them, instead of raw images, to the server for pose estimation.
However, existing work [35, 39, 66, 104] has revealed that attackers
could reconstruct original images with high fidelity solely from
extracted features, as shown in Figure 1. This poses a risk of privacy
leakage, as the disclosed information in scenes (e.g., pedestrian ac-
tivities) can affect subjective perceptions of privacy (§2). Although
the computer vision (CV) community recently proposed several
methods [40, 73, 96] for protecting extracted features by conceal-
ing their positions or descriptors, it is still possible to restore the
original images (§2).

In this paper, we propose PIPE, an innovative end-to-end system,
to preserve privacy in localization images for 6DoF pose estimation
of mobile devices. Given the subjective nature of privacy [75, 94],
especially in the context of images, the overarching goal of PIPE
is to diminish the leakage of information, thereby reducing the
risk of privacy breaches. To achieve this formidable goal, PIPE
carefully selects a limited subset of extracted features from localiza-
tion images and sends only them to the server for pose estimation.
We discuss the potential implications of this strategy in §7. Ex-
isting privacy-preserving techniques, such as fully homomorphic
encryption (FHE) [46] and multi-party computation (MPC) [49], are
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impractical for image-based pose estimation due to FHE’s high com-
putation latency [105] and MPC’s communication overhead [32].

Our main insight is that the visual quality of reconstructed im-
ages, and thus the leakage of information/privacy, could be dras-
tically reduced by uploading only a small subset of selected fea-
tures for pose estimation (§2.2). However, blindly doing this will
inevitably lower pose estimation accuracy and increase end-to-end
latency. Thus, we should effectively balance the trade-offs between
privacy preservation, pose estimation accuracy, and end-to-end la-
tency. Specifically, the design of PIPE poses the following key chal-
lenges. (1) While extracting more features on mobile devices can
enhance pose estimation accuracy, it leads to higher overall latency.
(2) Without accessing map data stored on the server, assessing the
importance of features for pose estimation on mobile devices is
challenging. (3) High-ranking features often cluster in visually dis-
tinctive areas such as corners, and selecting only a small subset of
them can decrease pose estimation accuracy due to reduced spatial
diversity. (4) There is no well-celebrated standard metric for eval-
uating the effectiveness of privacy-preserving image-based 6DoF
pose estimation. To address the above challenges, PIPE incorporates
the following creative solutions into a holistic system.
Time-efficient Feature Extraction (§4.1). Extracting features
from the default detection space leads to high computation overhead
on mobile devices. Thus, we explore the trade-off between feature
extraction time and pose estimation accuracy to properly limit the
feature-detection space, dramatically reducing feature extraction
time with a marginal impact on pose estimation accuracy.
Lightweight Model for Feature Ranking (§4.2). Different fea-
tures have varied contributions to pose estimation accuracy, de-
pending on their matchability to those in the map. Thus, instead
of ranking features purely based on factors such as their scores
calculated during extraction [65, 84], PIPE judiciously utilizes map
data to train a lightweight feature-ranking model for selecting the
important features that contribute to accurate pose estimation.
Effective Optimization of Feature Selection (§4.3).We resort to
the following insight from pose estimation algorithms to optimize
feature selection. High-ranking features, which are likely to match
those in the map, may be clustered together, limiting their collective
contribution to accurate pose estimation. Thus, a key optimization
is to leverage feature positions and deliberately select dispersed
high-ranking features to improve pose estimation accuracy.
New Metric for Measuring Privacy Leakage (§4.4). Traditional
metrics such as the structural similarity index measure (SSIM) [102]
predominantly gauge the leakage of information rather than privacy
in images. To overcome this limitation, we conduct a comprehensive
IRB-approved user study with 360+ participants to understand
privacy leakage in reconstructed images and introduce a novel
metric that incorporates four basic metrics to quantify the extent of
privacy leakage in images. This new metric has a higher correlation
with the privacy leakage rated by users than the basic ones.

We build a prototype of PIPE (§5) and thoroughly evaluate its
performance via publicly available datasets (§6). We highlight our
evaluation results as follows.
● PIPE effectively preserves privacy with limited leakage. With a
privacy-leakage level defined from 1 (no privacy leakage) to 10 (high
privacy leakage), PIPE leads to a leakage level of merely 1.66 and

1.70 for outdoor and indoor scenarios, respectively. For comparison,
without protection, the privacy-leakage level is 7.15 and 7.88 for
outdoor and indoor scenarios, respectively.
● PIPE maintains comparable pose estimation accuracy as the base-
line (i.e., with no privacy protection). On a large-scale dataset [88],
the 75th percentile of pose estimation errors for PIPE (baseline) is
about 0.20m (0.17m) for position and 0.39° (0.31°) for orientation.
● By selecting and uploading fewer features to the server, PIPE
significantly reduces computation overhead, decreasing the end-to-
end latency by up to 22.6% compared with the baseline (i.e., sends
images to the server for pose estimation).

The novelty of PIPE lies in reducing information and privacy
leakage by selecting only the indispensable features, thereby main-
taining high precision in 6DoF pose estimation and safeguarding
user privacy. While feature selection has been utilized to preserve
privacy in machine learning, such as leveraging gradient-based
perturbation to identify essential features for accurate model pre-
diction [69], it is unsuitable for PIPE. This is because, after feature
extraction, the core steps of state-of-the-art 6DoF pose estimation
schemes [55, 85] do not utilize machine-learning models, as exist-
ing learning-based methods are still less accurate [32, 38], making
the above approach ill-suited. However, with learning-based local-
ization methods continuing to advance, future extensions of PIPE
could incorporate neural networks to identify the most relevant
learned features for pose estimation while avoiding the transmis-
sion of less informative ones.

2 Background and Motivation

2.1 Background

Spatial Map Construction. Structure from motion (SfM) [16, 89]
is a widely adopted technique for constructing 3D spatial maps
with a set of 2D images. It first extracts 2D visual features from
images, which usually contain their position in the image, a score
describing how strong they are (e.g., representing contrast response
in scale-invariant feature transform (SIFT) features [65]), and a
unique descriptor that is highly invariant to the image’s scale, trans-
lation, and rotation, and robust to changes of illumination and
viewpoint [37, 65, 83]. SfM then matches these features to identify
overlapping images, estimates image poses, triangulates features’
3D positions, and uses bundle adjustment [99] to reduce errors. We
refer to the images for constructing maps as map images.
Image-based Localization for 6DoF Pose Estimation. Image-
based localization determines the position and orientation of mobile
devices (i.e., their 6DoF pose) by comparing images that they cap-
ture to a spatial map [87]. We refer to these images as localization
images. Image-based localization first extracts features from local-
ization images andmatches themwith those in themap based on the
Euclidean/Hamming distance between feature descriptors. Then,
it calculates the device’s 6DoF pose by performing perspective-𝑛-
point (P𝑛P) RANSAC [44] with the positions of the set of 𝑛 matched
features. We refer to features from localization images that con-
tribute to pose estimation as inlier features. SIFT is commonly used
for image-based mapping and localization [16, 86, 89].
Privacy Leakage of Image-based Pose Estimation.With the de-
velopment of cloud-based services, large-scale 6DoF localization can
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Figure 2: Common scenarios of AR/MR applications with the
percentage of users having privacy concerns.

be achieved for mobile devices [5, 20, 76]. Compared with schemes
such as GPS, image-based solutions are more accurate [18, 86] and
provide both position and orientation for mobile devices, offering
more opportunities for AR/MR [3, 8, 29, 60]. However, it requires
sending images to the server, which may contain sensitive visual
data, leading to privacy leakage when using untrusted localization
services or under eavesdropping adversary attacks [1, 2, 74, 96].

Instead of directly sending localization images, an alternative is
to retrieve features from them and send extracted features to the
server. However, this approach is not exempt from potential privacy
threats, as attacks employing convolutional neural networks (CNN)
can reconstruct original images from the features [35, 39, 66, 78,
104]. For example, Dosovitskiy et al. [39] proposed an encoder-
decoder CNN for reconstructing images from extracted features.
More recently, the introduction of generative adversarial networks
(GAN) and advanced CNN models has further enabled the recovery
of high-quality images from extracted features [35, 78, 104].

2.2 Motivation
Privacy Concerns in Localization Images for Pose Estimation.
To understand privacy concerns related to mobile devices capturing
images for AR/MR experiences, we conducted an IRB-approved
study through the Prolific platform [81]. We asked 111 participants
(52.3% male, 45.0% female, 2.7% unspecified) about their privacy con-
cerns across 23 common AR/MR scenarios [7] and let them identify
objects that trigger concerns. In Figure 2, we present the scenarios
in descending order of the percentage of user responses expressing
privacy concerns. The results highlight the need to prevent privacy
leakage across all scenarios. Moreover, the varied privacy prefer-
ences emphasize the importance of user-centric privacy control that
can adjust the level of privacy preservation in response to different
preferences (i.e., lower privacy protection for higher system utility).
Limitations of Existing Techniques. There are two main ap-
proaches to reduce privacy leakage from localization images. The
first protects feature positions. For example, Speciale et al. [96] con-
vert extracted features to random lines before sending them to the
server, which hides the content of original images but preserves the
positional relationships of features necessary for 6DoF pose estima-
tion. However, this method remains susceptible to reconstruction
attacks similar to those used by Chelani et al. [28] on 3D data, which
recover original point positions from the closest points between

Figure 3: Reconstructed images from 100% (left), 50% (middle),
and 10% (right) of extracted features. The image is highly
blurred with only 10% of the features.

Method # of Matched # of Inlier Recall @ Thresh. (%)
Features Features High Med. Low

All 501±408 353±372 83.4 91.3 96.0
10% 69.7±46.4 38.6±38.5 68.5 77.8 85.5

Table 1: Pose estimation accuracy and the number ofmatched
and inlier features using all extracted and 10% of randomly
selected SIFT features on the Aachen dataset [88]. On average,
there are 2,727 features extracted from images. We show the
recalls of accurate pose estimation under high, medium, and
low-precision intervals.

pairs of lines. The second approach protects feature descriptors. For
instance, NinjaDesc [73] utilizes an adversarial training network
to transform original descriptors into altered values, degrading
image reconstruction quality while maintaining matching capabili-
ties. However, a recent study by Wu et al. [104] demonstrates that
privacy can be compromised by reconstructing images using only
feature positions.
Trade-offs between Privacy and Utility. Prior work [35, 105]
shows that randomly reducing features from localization images
degrades the quality of reconstructed images. Our experiments
on the Aachen dataset [88] show highly blurred images with 10%
of randomly selected SIFT features, and details are significantly
diminished (Figure 3). However, random feature selection reduces
matching utility [35] and increases pose estimation error [105].

To analyze the pose estimation accuracy, we compare position
and orientation errors using all features versus 10% of randomly
selected features on the Aachen dataset [88]. The position error is
calculated as the Euclidean distance between the ground truth and
the estimated position, while the orientation error measures the
minimum rotation-angle difference [51]. Following the common
practice [88], we report the recall of pose estimation with position
errors within 𝑋 meters and orientation errors within 𝑌 degrees
under high-precision (𝑋 as 0.25, 𝑌 as 2), medium-precision (𝑋 as
0.5, 𝑌 as 5), and low-precision (𝑋 as 5, 𝑌 as 10) intervals. As shown
in Table 1, using 10% of randomly selected features leads to a 14.9%
accuracy drop (from 83.4% to 68.5%) for high-precision pose estima-
tion. This is because only around 13% of all the extracted features
are inliers, and randomly dropping 90% of features results in losing
approximately 90% of inliers for accurate pose estimation.

The above issues inspire us to design a lightweight method that
carefully selects a subset of features with a high likelihood of pass-
ing the matching step and being identified as inliers by the P𝑛P
RANSAC algorithm in pose estimation. This approach preserves
privacy by limiting exposed features while maintaining pose esti-
mation accuracy by including more inliers than random selection.
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Figure 4: System architecture and workflow of PIPE, a generic
solution that enhances pose estimation with privacy protec-
tion by selecting a subset of features without modifying the
existing pipeline.

3 Overview and Threat Models

3.1 Overview
PIPE aims to strike a balance between privacy protection, system
utility (i.e., pose estimation accuracy), and system performance (i.e.,
end-to-end latency for pose estimation). As shown in Figure 4, to
achieve this goal, PIPE extracts features from localization images
with a constricted feature-detection space (§4.1) and uploads only a
critical subset of extracted features that are essential for pose estima-
tion. The key challenge is to ensure the selected features still carry
enough information for accurate pose estimation. PIPE strategically
selects a subset of features, focusing on high-ranking (§4.2) and non-
clustered (§4.3) ones to preserve essential data for pose estimation
while reducing privacy leakage. Since privacy is often subjective
and context-dependent, existing metrics such as SSIM [102] fail to
reflect privacy risks from images accurately. To address this, we
propose a new learning-based metric that incorporates traditional
metrics to capture leakage from various perspectives (§4.4).

Note that it is prohibitive to continuously perform pose estima-
tion on mobile devices without a server, due to its high computation
overhead and the large size of spatial maps. For example, executing
simultaneous localization and mapping (SLAM), which has been uti-
lized in ARKit [6] and ARCore [4], on mobile devices continuously
can be challenging because of the increasing complexity as the map
grows [24]. Aligning with the practical localization in large-scale
environments [68], PIPE is not designed to localize every image
in real-time. Instead, lightweight SLAM can be performed locally
for small-scale tracking, reducing computation and memory usage,
and PIPE focuses on the localization of keyframe images selected
by SLAM. These images are periodically sent to a server to utilize
its enhanced storage and processing capabilities for localization.
This ensures accurate localization when transitioning into a new
area within a global map or correcting accumulated errors in lo-
cal tracking. Another practical system design involves storing the
entire map on a server and retrieving relevant subsets based on
GPS locations to reduce on-device computation and memory usage

for pose estimation. However, map owners may not want to share
their data with other parties [32].

3.2 Threat Models
Attack Scenarios. We examine two predominant adversarial sce-
narios. The first considers the semi-honest security model [50, 100],
where involved participants, such as the server, are not trusted with
secrets but are expected to adhere to the prescribed pose estimation
protocol [17, 27, 106]. Attackers with access to the server, such as
privileged employees, can obtain user-uploaded features and all
internal values in pose estimation. Their privileged status allows
them to bypass traditional security checks, making their activities
hard to be detected, and thus more concerning. The second sce-
nario is the eavesdropping adversary [43, 96, 97], specifically in
the wireless context, where an attacker deftly taps into the com-
munication (uploaded features) between the client and the server.
This attacker’s interception, often through a man-in-the-middle
attack, gains access to extracted features from localization images.
In both scenarios, adversaries aim to infer private information with-
out alerting the system or users, and unauthorized access could
unravel users’ sensitive surrounding environments and activities.
Attack Methods. Attackers infer privacy from extracted features
for pose estimation by first applying reverse-engineering tech-
niques on the features to reconstruct images that closely resemble
the original ones [35, 73, 96, 104]. Such reconstructions can expose
sensitive information, thereby increasing privacy concerns. For a
more efficient and automated privacy inference than what man-
ual analysis offers, after attempting to re-generate original images
from features, attackers subsequently employ machine learning
techniques to further extract or deduce private information from
images (e.g., via object detection) [35].
Privacy Concerns for Maps and Pose Estimation Results.
While our focus centers on localization images, we acknowledge po-
tential privacy concerns regarding spatial maps and pose estimation
results. However, these issues are beyond the scope of PIPE. We as-
sume that users upload spatial maps with privacy-sensitive objects
removed and use the pose estimation service with full knowledge
and consent.

4 System Design of PIPE

4.1 Time-efficient Feature Extraction
Problem and Challenges. The first step in PIPE is to extract
features from localization images. While having more features can
improve pose estimation accuracy, this process is computationally
intensive on mobile devices, and the end-to-end latency grows
with the number of extracted features. To address this problem,
the feature detection space should be constricted to reduce feature-
extraction time. However, this constriction may negatively affect
pose estimation accuracy due to the decreased number of extracted
features. The key challenge lies in striking the right balance between
computational efficiency and pose estimation accuracy.
Our approach. To optimize feature-detection space with a limited
negative impact on pose estimation accuracy, PIPE explores various
configurations of feature-searching layers and image resolution to
accelerate feature extraction without sacrificing pose estimation
accuracy. The joint consideration of latency and accuracy sets our
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Method Recall @ Thresh (%)
High Med. Low

Default SIFT 83.6 92.0 97.6
Rmv 1st Octave 81.1 89.9 95.8
1 Octave Layer 83.4 91.3 96.0

Table 2: Pose estimation results with images
at 1024×768 under three SIFT settings.

Resolution # of # of Recall @ Thresh (%)
Features Inliers High Med. Low

1600×1200 13,938±4,875 1,333±1,450 90.5 94.7 98.3
1024×768 5,030±1,744 739±740 90.6 94.7 98.2
768×576 2,951±1,008 477±466 87.4 93.2 97.4
512×384 1,551±500.8 254±251 85.7 91.7 95.7

Table 3: Pose estimation accuracy and the number of features and inliers
under the resolutions of 1600×1200, 1024×768, 768×576, and 512×384.

method apart from traditional CV techniques that primarily focus
on accuracy alone. We use SIFT [65] as a case study to illustrate
PIPE’s design, since it is robust and effective for state-of-the-art
image-based mapping and localization [47, 78, 89, 95].
Limiting Feature-searching Layers. SIFT [65] starts by construct-
ing octaves, with the first octave created by upsampling the original
image. Successive octaves are initiated by images downsampled
by a factor of two from the previous octave until the image size is
too small for further downsampling. In each octave, SIFT generates
increasingly blurred images using a Gaussian kernel and computes
pixel-wise differences between successive ones to create images of
difference of Gaussians (DoG). These DoG images form the layers
of an octave where features are detected, with the number of layers
being user-defined (e.g., the default is 3 in OpenCV [26]).

We explore two strategies to reduce feature-extraction over-
head. First, since most SIFT features are detected in the first octave,
excluding them can significantly reduce extraction time. Second, re-
stricting the number of layers in each octave (e.g., from the default 3
to 1) reduces the search space and speeds up detection. While both
strategies decrease extraction time, they have different impacts on
pose estimation accuracy. Table 2 illustrates our experiments on
the Aachen [88] dataset. Removing first-octave features results in
a 2.5% accuracy drop at high-precision intervals (from 83.6% to
81.1%). In contrast, limiting octave layers marginally impacts pose
estimation accuracy, especially for the high-precision interval (from
83.6% to 83.4%). Thus, PIPE constrains octave layers for feature ex-
traction. This approach can be extended to other algorithms, such
as speeded-up robust features (SURF) [23], similar to SIFT for using
scale-invariant features.
Image Resizing. Feature extraction takes a longer time to pro-
cess higher-resolution images with more pixels. However, com-
pared with lower-resolution images, they may not offer signifi-
cantly more information for accurate pose estimation. We conduct
experiments on Samsung Galaxy S22+ with the Aachen [88] dataset
to understand the trade-off between pose estimation accuracy and
feature-extraction time for different resolutions. We select localiza-
tion images with 1600×1200 resolution and resize them to 1024×768,
768×576, and 512×384.

Table 3 shows the accuracy of pose estimation with different
resolutions under three intervals. The results indicate that resizing
images from 1600×1200 to 1024×768 reduces feature extraction
time by over 50% (from 463±27 ms to 219±16 ms) with minimal
impact on accuracy. However, further reduction in resolution de-
creases accuracy. Similar results are observed with other outdoor
and indoor datasets, including the GreatCourt [58], the 7Scenes [92],

and NYU [72] datasets. Thus, PIPE resizes images to 1024×768 to
balance efficiency and pose estimation accuracy.

4.2 Lightweight Model for Feature Ranking
Problem and Challenges. Not all features are equally important
for 6DoF pose estimation. As shown in §2.2, only around 13% of
extracted features are inliers, thereby making a limited contribution
to accurate pose estimation. Hence, PIPE needs to identify the
subset of extracted features that hold greater importance for pose
estimation. Unlike server-side feature matching and P𝑛P RANSAC,
which leverage spatial maps to choose features, the challenge of
inlier-feature selection for a PIPE client is to filter out outliers
without the resource-intensive matching with map features.
Our approach. Our key insight is that we can interpret feature
selection as classifying whether a feature matches any map features.
This is due to the similarities between feature matching in pose es-
timation and classification. Specifically, in pose estimation, two fea-
tures with similar descriptors are matchable, while in classification,
instances are grouped into the same class if they exhibit sufficient
similarity. Based on this insight, PIPE trains a lightweight binary
classification model using a multilayer perceptron (MLP) [10] that
determines if image features are matchable to map features based
on their descriptors. The model outputs confidence scores that indi-
cate their matchability. Considering that the features are extracted
from images, applying MLP to these features aligns with common
practices in CNN, where the final layers typically leverage MLPs to
produce classification results.

We utilize the features from all map images for training, label-
ing them as inliers or outliers based on whether they contribute
to the map. The ranking model is lightweight and plug-and-play,
allowing for seamless integration with other feature descriptors
(e.g., ORB [84] as shown in §6). Specifically, a fundamental aspect
of our design is the effective use of map data for training from a
system perspective. This design considers the trade-off between ac-
curacy and privacy, as our goal is to improve localization accuracy
and reduce privacy leakage by reducing the number of uploaded
features while ensuring they remain essential for localization. As
a result, the ranking model is designed to leverage map data to
optimize feature selection based on a given map, retaining only the
most relevant features while filtering out less informative ones as
much as possible.

While our proposed model is map-specific, we can employ trans-
fer learning [77] for rapidmodel training. The reason is that features
from different maps may exhibit shared structural and characteris-
tic similarities. For example, in urban areas, buildings often possess
similar structures irrespective of their geographical location. These
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Figure 5: Comparison of top 10% ranked features (c) and those
determined by PIPE’s farthest point sampling (d), alongside
the original image (a) and all features (b).

shared structures enable the application of transfer learning, al-
lowing for the knowledge acquired from one map to be effectively
utilized in others, considerably accelerating training (§6.4).

Note that our proposed solution is different from methods for
reducing descriptor dimensions, such as t-distributed stochastic
neighbor embedding (t-SNE) [12] and Lasso [9]. The reason is that
they do not protect feature positions and can inadvertently reduce
the distinctiveness of features, which is crucial for accurate feature
matching and pose estimation.

4.3 Effective Optimization of Feature Selection
Problem and Challenges. Suppose that PIPE needs to select and
send 𝑝% features for pose estimation. While ranking features based
on matchability can improve accuracy, selecting only high-ranking
features may reduce spatial diversity since they often cluster in
visually distinctive areas such as corners, where the identifiable
characteristics of these regions enhance matching accuracy. This
reduced spatial diversity may make accurate pose estimation chal-
lenging. For example, when using four pairs of matched points for
P3P RANSAC, clustered points might be treated as a single point
in the worst case, offering minimal positional constraints. Thus,
the challenge lies in selecting high-ranking features that jointly
contribute the most to accurate pose estimation.
Our approach.Our key observation is that, for robust and accurate
pose estimation, the selected features should not only be inliers
but also be as scattered as possible. This is because well-distributed
features cover a larger area and different parts of the scene, better
conditioning the calculations involved in the P𝑛P RANSAC algo-
rithm. Therefore, we design a filter inspired by the farthest point
sampling (FPS) algorithm [42]. For ranked features, we first filter
out those with a confidence score lower than a threshold (e.g., 0.5,
a standard threshold used in the sigmoid function for binary classi-
fication [53]). Then, we select the 𝑝% of features via FPS from the
remaining ones by leveraging only their 2D positions. For certain
images, there may be less than 𝑝% of features with a confidence level
higher than 0.5. Thus, PIPE begins by examining the confidence
scores of the top 𝑝% of sorted features. If any score is below the
defined threshold, we directly select the top 𝑝% of ranked features.

Figure 5 shows an example with a localization image. Selecting
the top 10% of ranked features results in pose estimation errors of
0.5168 m for position and 0.4949° for rotation. However, our method
makes the selected features scattered, providing more features on
the left side of the image for more robust pose estimation. Thus,
the resulting position and rotation errors are 0.0334 m and 0.0987°,
close to the results with all features (0.0328 m and 0.0637°).

4.4 New Privacy Leakage Metric

Problem and Challenges. There is no well-celebrated metric for
quantifying the effectiveness of privacy-preserving schemes for
images. Prior works [35, 73] utilize SSIM [102] to demonstrate the
efficiency of privacy preservation by comparing the similarity be-
tween the original and reconstructed images. However, privacy is
often subjective [75, 94] and context-dependent. A low similarity
does not necessarily equate to less privacy leakage. Although differ-
ential privacy [41] is widely used and provides a level of assurance,
it may not be suitable for image-based pose estimation (§7).
Our approach.We propose a data-driven metric, named pLEAK,
that utilizes measures from various perspectives as input to com-
prehensively quantify privacy leakage. pLEAK evaluates privacy
through a human-centric perspective, reflecting subjective interpre-
tations of images’ privacy leakage. To ensure the generalizability of
pLEAK, we collect data from an extensive user study encompassing
both indoor and outdoor scenarios that represent real-world cases.

We first enumerate several metrics and analyze how they re-
flect potential privacy leakage. On the pixel level, SSIM [102] mea-
sures the similarity between the original and reconstructed images,
where a higher SSIM implies that more original details are pre-
served, potentially increasing privacy leakage. NRMSE [11] quan-
tifies pixel-wise reconstruction error, and a lower NRMSE corre-
sponds to higher similarity and potentially more privacy leakage.
From the content perspective, object detectionmeasures the number
of identifiable objects, with fewer objects suggesting better privacy
protection. For information leakage, fewer extracted features from
the reconstructed images indicate less retrievable information, re-
ducing privacy risks. We also consider information entropy as a
candidate metric since it quantifies the distribution of pixel intensi-
ties within an image, and reconstructed images that retain details
tend to have a higher entropy than those with lost details.

Given that the privacy risk of an image is subjective and is de-
fined by human perception, we conduct an IRB-approved online
user study to label privacy-leakage levels for different images, pro-
viding the ground truth for training and validating our model. We
randomly select 500 images from the outdoor Aachen dataset [88]
and another 500 images from the indoor NYU depth dataset [72].
For each localization image, we present users with five other im-
ages reconstructed from 10%, 30%, 50%, 70%, and 90% of its features
extracted and selected by PIPE. Thus, this user study involves 6,000
images and participants rate privacy leakage on a scale from 1 to 10.
Before the online user study, we use anonymized example images
with varying levels of sensitive information (e.g., faces and identifi-
able objects) to help participants understand what may constitute
privacy leakage, ensuring common understanding among all partic-
ipants. To reduce the impact of outliers, we calculate the average
rating for each image after removing the highest and lowest ratings.
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Metric Outdoor Indoor
SSIM 0.604 0.583

NRMSE -0.632 -0.674
# of Objects 0.683 0.754
# of Features 0.797 0.624

Information Entropy 0.071 0.086
pLEAK (Ours) 0.850 0.909

Table 4: The Spearman correlation coefficients between var-
ious metrics and privacy-leakage ratings from user study.
Variables with absolute values ≥0.3 are considered correlated.

Furthermore, we collect at least 10 ratings for images that show
high variance in privacy perceptions until the variance becomes
stable, ensuring that our results remain robust and reliable.

We then evaluate the correlation between these candidate met-
rics and the ground-truth privacy leakage ratings obtained from
our user study. Table 4 shows the Spearman correlation between
the selected metrics and user ratings. SSIM, NRMSE, object count,
and feature count all show high correlations (correlation coefficient
≥ 0.3) with the perceived privacy leakage. In contrast, information
entropy shows a low correlation with the user ratings and was
therefore excluded from the formulation of pLEAK. Specifically,
SSIM and NRMSE show similar correlations for both indoor and
outdoor images. The number of objects has a much higher cor-
relation for indoor scenarios (0.752) than outdoors (0.686), while
the number of features has a much higher correlation for outdoor
scenarios (0.801) than indoors (0.620). This is probably because out-
door images offer a greater variety of feature-level information due
to diverse content and lighting conditions, whereas indoor images
usually contain more privacy-related objects, both of which benefit
the measurement of privacy leakage.

We further conduct a cross-correlation analysis among the four
candidate metrics, including SSIM, NRMSE, number of objects,
and number of features, to evaluate their mutual redundancy. Our
results show that all pairwise correlations for outdoor and indoor
datasets remain <0.7, showing moderate correlations. This indicates
that no two metrics exhibit high redundancy, thereby justifying the
inclusion of all four metrics in the formulation of pLEAK.

Since the above metrics (i.e., SSIM, NRMSE, number of objects,
and number of features) reflect privacy leakage from different per-
spectives, pLEAK leverages a learning-based approach that inte-
grates them to comprehensively measure the overall privacy leak-
age from images. Rather than providing a formal privacy guarantee,
pLEAK serves as a proxy for privacy leakage by combining multiple
objective metrics to approximate subjective privacy risks based on
observable and quantifiable attributes of the reconstructed image.
While it does not enforce theoretical privacy protections, pLEAK
offers a practical assessment of privacy leakage by estimating the
extent of retained information in a way that aligns with human per-
ception. Our method involves training a regression model with the
above four metrics as input and producing an output representing
the privacy-leakage level, ranging from 1 (no privacy leakage) to 10
(the highest level of privacy leakage). We fine-tune the pre-trained
Yolov4 [25] model by including private objects identified in §2.2
and use SIFT [65] for feature extraction.

Acknowledging that individual users may overlook sensitive
information, we collect ratings on privacy leakage from a wide
range of participants to ensure our metric reflects diverse views. To
this end, we have collected responses from an extensive user study
with a total of 230 participants from 33 countries (48.3% male, 50.0%
female, and 1.7% unspecified). The age distribution spans from 18
to 40+, with 15.2% of participants aged 18–24, 25.2% aged 24–30,
30.0% aged 30–40, and 29.6% over 40. For each image, we collect at
least ten responses, resulting in a total of 60,000+ ratings.

Table 4 shows the Spearman correlation between the fourmetrics
and user ratings, confirming their relevance (correlation coefficient
≥ 0.3). SSIM and NRMSE show similar correlations for both indoor
and outdoor images. The number of objects has a much higher
correlation for indoor scenarios (0.752) than outdoors (0.686), while
the number of features has a much higher correlation for outdoor
scenarios (0.801) than indoors (0.620). This is probably because
outdoor images offer a greater variety of feature-level information
due to diverse content and lighting conditions, whereas indoor
images usually contain more privacy-related objects, both of which
benefit the measurement of privacy leakage.

We train pLEAK with linear regression (LR), support vector re-
gression (SVR), and MLP, and perform five-fold cross-validation.
The average prediction errors in outdoor/indoor scenarios are
10.2%/8.6%, 8.3%/7.3%, and 10.8%/10.9%, with LR, SVR, and MLP, re-
spectively. Thus, we select SVR for pLEAK to measure privacy leak-
age. Table 4 shows the Spearman correlation between the ground-
truth privacy-leakage levels and the predicted values are high, 0.850
for outdoor and 0.909 for indoor scenarios. This validates pLEAK’s
reliability in accurately inferring privacy leakage from images.

5 System Implementation
User-centric Privacy Control. A key feature of PIPE is that it al-
lows users to choose their desired privacy-protection level, offering
high, medium, and low options. To this end, we conduct another
IRB-approved online user study to determine the value of 𝑝 for
ensuring different levels of privacy protection. In the study, we ran-
domly select 500 images from the Aachen dataset [88]. We present
participants with the original images and those reconstructed from
𝑝% of features selected by PIPE in descending order, from 100 to 10
at a step of 10. For each image, we ask participants the value of 𝑝
that is sufficient to preserve privacy.

We collect 10+ responses for each image from a total of 139
participants from 25 countries (57.3% male, 42.0% female, and 0.7%
unspecified). For the age distribution, 15.4% of participants are 18
to 24 years old, 25.2% are 24 to 30, 30.1% are 30 to 40, and 29.3% are
older than 40. From the 5,000+ ratings collected, we compute the
25th, 50th, 75th, and 95th percentiles, which correspond to differ-
ent levels of privacy protection. The 25th percentile, representing
the threshold at which at least 50% of participants perceived suffi-
cient privacy protection, corresponds to selecting 70% of features.
Similarly, the 50th, 75th and 95th percentiles, satisfying 50%, 75%
and nearly all users, correspond to selecting 40%, 20% and 10% of
features, respectively.
Implementation.We develop a prototype of the PIPE server with
Linux and the PIPE client on Samsung Galaxy S22+ (Android 13).
The PIPE server, which provides pose estimation, incorporates func-
tions from the hierarchical localization (HLoc) toolbox [85]. We
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implement all device-side functions with Java8, ensuring compati-
bility with other Android devices.

Upon receiving localization images, PIPE processes them in
Bitmap and utilizes the OpenCV library [26] to resize and con-
vert them to grayscale for feature extraction. Then, PIPE ranks and
selects 𝑝% of extracted features according to users’ privacy prefer-
ences. The feature ranking model is implemented in Python with
TensorFlow [13] and executed on mobile GPU with TensorFlow-
lite [64]. The MLP model contains two hidden layers (each with
4,096 neurons), followed by a dropout layer with a rate of 0.1. We
train the model with an Adam optimizer [59], setting the batch size
as 512, the learning rate as 1e-4, and the training epoch as 50, which
is sufficient for convergence.

Our implementation includes over 1,000+ lines of code: 550+ in
Java for client operations, and 450+ in Python for server-side pose
estimation and model training.

6 Performance Evaluation

6.1 Experiment Setup
Mobile Device: The mobile device under test is Samsung Galaxy
S22+ with a Qualcomm Snapdragon SM8450 chip, featuring eight
Cortex cores and an Adreno 730 GPU.
Server: The server for pose estimation and model training is a
machine equipped with an Intel i7-11700 CPU, 32GB memory, and
an NVIDIA GeForce RTX 3060 GPU.
Networking: We connect the server to a Cisco DPC3941T WiFi
router with an Ethernet cable. The mobile device communicates
with the server wirelessly over WiFi, which provides 100+Mbps of
bandwidth and ∼3 ms round-trip delay.
Visual Features: We focus on the well-known SIFT [65] used in
SfM and experiment with ORB [84] and SURF [23] (128-dimension
version) to demonstrate the generalizability of PIPE. Our method
also supports machine-learned features such as SuperPoint [37].
Metrics: We leverage the pLEAK metric proposed in §4.4 to evalu-
ate the effectiveness of privacy preservation. Moreover, to assess
the accuracy of pose estimation, we utilize the metrics introduced
in §2.2, which report position and orientation errors and the recall
rates of errors within high, medium, and low-precision intervals.
Datasets: We conduct experiments with four well-established
datasets for a comprehensive evaluation across various environ-
ments.: the outdoor Aachen [88] and GreatCourt [58], and the
indoor 7Scenes [92] and NYU depth [72] datasets.
Image Reconstruction Model: We consider two state-of-the-
art attack models, SIFT-Reconstruction [104] and NinjaDesc [73],
which utilize CNN to reconstruct images from extracted features.

6.2 Privacy Protection
In this section, we evaluate PIPE’s efficacy in protecting user pri-
vacy. We first show that PIPE hinders accurate image reconstruc-
tions and restricts object detection within the reconstructed images.
Subsequently, we employ pLEAK to show PIPE’s capability in reduc-
ing privacy leakage, which outperforms state-of-the-art methods.
Evaluation with SSIM and Object Detection. Figure 6 plots the
SSIM and the normalized number of objects detected in images
reconstructed using 𝑝% of SIFT or ORB features selected by PIPE,
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Figure 6: SSIM (left) and the normalized number of objects
(right) of outdoor (O) and indoor (I) images reconstructed
using SIFT-Reconstruction [104]. The percent of features 𝑝
varies from 10 to 100 in steps of 10.
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Figure 7: Privacy leakage of outdoor (left) and indoor (right)
images reconstructed using PIPE selected features (𝑝 varies
from 10 to 100 in steps of 10). The red line indicates privacy
leakage of original images.

with 𝑝 ranging from 10 to 100 in steps of 10. SURF shows comparable
performance with SIFT, probably because both of them use 128-
dimensional descriptors, preserving feature distinctiveness and
sufficient information for reconstruction. The number of objects
is normalized based on the count from the (unprotected) original
images, which ranges from 1 to 60 for outdoor and 2 to 69 for indoor
scenes. Due to space constraints, we present results from the SIFT-
Reconstruction model [104], which outperforms NinjaDesc [73]
(e.g., SSIM of 0.50 vs. 0.44 for outdoor images reconstructed from
all features). In the following part on evaluating privacy leakage
levels, we detail the differences between the two models. As PIPE
reduces the uploaded features, there is a marked decrease in SSIM
and the number of detected objects. These trends show the efficacy
of PIPE in deterring privacy attacks compared with uploading all
features for pose estimation.

By selectively uploading features, PIPE reduces the risk of recon-
structing images that closely resemble the originals. For example,
the SSIM of images reconstructed from using 10% features is lower
than 0.43 for outdoor and indoor scenes, indicating a bad similarity
to the original images [34]. For comparison, the SSIM of images
reconstructed from all SIFT features is 0.50 and 0.63 for outdoor
and indoor scenes, respectively, showing a closer resemblance to
the originals, which potentially leaks more privacy. While the dif-
ference in SSIM for outdoor scenes is 0.07, we will show next this
still indicates a noticeable change in privacy risks (i.e., 1.6 vs. 4.6
for privacy-leakage level).

Images reconstructed from reduced features appear blurred, mak-
ing it challenging for machine learning techniques, such as object
detection, to identify private objects. Specifically, indoor images
reconstructed using all SIFT features reveal around 38% of objects
found in the original images, higher than the 13% observed for
outdoor images. This may be attributed to the higher density of
objects in indoor environments, resulting in more areas containing
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Method Aachen (SIFT) Aachen (SURF) Aachen (ORB) 7Scenes (SIFT) 7Scenes (SURF) 7Scenes (ORB)
High Med. Low High Med. Low High Med. Low High Med. Low High Med. Low High Med. Low

All 83.4 91.3 96.0 78.5 86.8 93.1 58.4 69.8 80.0 76.5 93.2 97.3 74.5 92.7 97.0 64.7 86.6 93.2
Random 68.5 77.8 85.5 62.3 72.8 82.2 35.4 47.1 59.2 60.3 81.4 88.8 58.2 80.1 87.9 47.9 71.3 81.2
Score 53.8 64.1 73.1 62.1 73.2 81.7 26.3 37.3 48.7 54.3 76.8 86.4 56.9 79.7 87.3 30.8 55.3 71.0
Ranked 78.9 88.8 94.9 74.0 82.3 89.9 44.1 55.1 67.5 65.3 86.8 93.8 63.1 85.2 92.1 51.4 75.7 85.4
PIPE 80.7 88.6 94.9 74.7 82.5 90.1 45.3 57.0 69.8 68.7 89.4 94.7 66.8 88.2 93.9 54.4 77.7 86.4

Table 5: Pose estimation accuracy on the Aachen and 7Scenes datasets with SIFT and ORB features for five different schemes.
Red indicates the best result, and Blue indicates the second-best result.

identifiable objects being reconstructed. Nevertheless, with PIPE’s
protection, the proportion of detected objects sharply decreases,
dropping to below 1% for both outdoor and indoor images when
selecting 10% features.
Evaluation of Privacy Leakage Level.We use the pLEAK metric
proposed in §4.4 to evaluate the effectiveness of privacy protection.
In Figure 7, we plot the privacy-leakage level of images recon-
structed with 𝑝% of features selected by PIPE. We vary 𝑝 from 10
to 100 in steps of 10. The horizontal red line indicates the privacy-
leakage level of original images without protection. We refer to
the attack model that reconstructs images from SIFT and ORB fea-
tures with the SIFT-Reconstruction [104] model as SR-SIFT and
SR-ORB and refer to those with NinjaDesc [73] as Ninja-SIFT and
Ninja-ORB, respectively. As shown in Figure 7, indoor and outdoor
images without protection have a high privacy-leakage level of 7+.
In particular, indoor images tend to leak more privacy because they
often contain more private objects, for example, in bedrooms.

The SIFT-Reconstruction model, in comparison to the NinjaDesc
model, leverages adversarial learning and reconstructs images from
coarse to fine granularity, thereby resulting in higher-quality im-
ages with a better reconstruction of private content. Consequently,
we focus on assessing privacy leakage in images reconstructed with
the SIFT-Reconstruction model. As shown in Figure 7, reconstruct-
ing images from fewer features selected by PIPE notably reduces
privacy leakage, thereby offering improved privacy protection. The
privacy-leakage level is low (1.6 and 1.7 for outdoor and indoor
images, respectively) when we set 𝑝 as 10. On the other hand, even
when an image is protected by uploading all its extracted features
for pose estimation, the level of privacy leakage remains substantial
(4.6 and 5.8 for outdoor and indoor images, respectively).

ORB features lead to less privacy leakage than SIFT features for
both outdoor and indoor datasets. The difference can be primarily
attributed to the distinct characteristics of SIFT andORB descriptors.
SIFT generates a 128-dimensional vector for each feature, with
each dimension represented by 8 bits, while ORB utilizes a more
compact 256-bit binary string as its descriptor. Thus, ORB features
potentially encode less data about images, presenting a lower risk
of privacy leakage. However, we show that ORB features perform
worse regarding pose estimation accuracy (§6.3).
Comparison with Prior Work.We use the pLEAKmetric to com-
pare PIPE with state-of-the-art methods that obscure either feature
positions [96] or descriptors [40, 73] using the Aachen dataset. We
employ the SIFT-Reconstruction model for image reconstruction.
For methods that conceal feature positions, we adopt the attack

strategy proposed by Speciale et al. [96]. For methods focusing on
protecting descriptors [40, 73], we provide the model with only
feature positions, assuming the descriptors are well-protected.

Protecting positions (descriptors) leads to a privacy-leakage level
of 2.8 (2.9), which is less effective compared with the using 10% fea-
tures (1.6) and 20% features (2.1) provided by PIPE. This is because,
compared with merely protecting positions or descriptors, PIPE
leaks less privacy by sending only a limited number of features
from the client to the server.

6.3 Pose Estimation Accuracy
We evaluate the pose estimation accuracywith four different feature
selection methods, namely Random, Score, Ranked, and PIPE. Ran-
dom selects features randomly. Score selects features based on their
score values, which are generated by feature extraction algorithms
and indicate the distinctiveness and reliability of features [65, 84].
To analyze the impact of individual design components of PIPE,
we conduct an ablation study where Ranked selects features solely
based on their ranking (§4.2), while PIPE incorporates both rank-
ing (§4.2) and spatial distribution (§4.3) for feature selection. We
compare these methods with a baseline that utilizes all features for
pose estimation (without privacy protection).

Table 5 compares the baseline and different feature selection
methods on the outdoor Aachen and indoor 7Scenes datasets with
𝑝 set as 10. ORB performs the worst because it is less scale-invariant
than SIFT and SURF [98], which affects the effectiveness of feature
matching and subsequent pose estimation. Compared with SIFT, al-
though SURF is also scale-invariant, it uses an approximate filtering
approach for faster feature extraction, which may detect keypoints
with lower distinctiveness, reducing the pose estimation accuracy.
Since pose estimation with SIFT features performs better than ORB
and SURF features, we mainly focus on pose estimation with SIFT
features in the following analysis, though the results with ORB and
SURF features show similar trends.

Our results highlight the effectiveness of PIPE, which offers reli-
able pose estimation by considering both the ranking and spatial
distribution of features. On the Aachen dataset with SIFT features,
Score is the least effective, indicating that the score values gener-
ated by feature extraction algorithms do not offer valuable hints
on whether a feature is an inlier. Compared with Random, Ranked
improves the recall rate under the high-precision interval from
68.5% to 78.9%, as it selects more inliers (118) than Random (38). Fur-
thermore, PIPE selects high-ranking and scattered features, leading
to more accurate pose estimation comparable to the performance
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Resolution Recall @ Thresh (%)
High Med. Low

1600×1200 88.0 93.1 96.7
1024×768 87.9 93.4 96.6
768×576 80.6 88.3 92.8
512×384 74.0 83.0 87.7

Table 6: Pose estimation accuracy of PIPE on the Aachen
dataset with varied resolutions.
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Figure 7: Pose estimation errors onAachen (left) and 7Scenes
(right) with the SIFT features selected by PIPE comparedwith
using all features. 𝑝 varies from 10 to 40 at steps of 10.
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Figure 8: Comparison of validation loss
between Scratch and Transfer models on
MapB of Aachen.

Method Aachen 7Scenes
High Med. Low High Med. Low

Full Training 77.1 86.3 92.1 68.1 88.7 94.2
𝑅𝑎𝑛𝑑𝑜𝑚 67.2 76.9 84.2 59.4 81.1 88.2

Pre-trained on MapA 72.7 81.9 88.7 61.9 83.4 90.6
Scratch (30 mins) 72.2 81.1 88.5 64.3 86.1 92.9
Transfer (30 mins) 76.9 85.8 91.4 68.0 88.4 93.7

Table 7: Localization results on MapB of Aachen and 7Scenes datasets with
transfer learning. Red indicates the best result, and Blue indicates the second-
best result.

achieved in prior work [40, 73, 96] for privacy-preserving image-
based pose estimation. The performance of PIPE is close to the
baseline, falling short by only 2.7% under the high-precision in-
terval. The 75th percentile of pose estimation errors for PIPE is
relatively low, with a position error of ∼0.20m and an orientation
error of ∼0.39°. For comparison, the 75th percentile of pose estima-
tion errors of the baseline is around 0.17m and 0.31°.

On the 7Scenes dataset, the gap in recall rates under the high-
precision interval between PIPE and the baseline is 7.8%, which is
larger than that on the Aachen dataset (2.7%). This is mainly due
to the high rotation errors of the baseline. The 75th percentile of
rotation errors for the baseline is 1.9°, which is close to the thresh-
old of the high-precision interval (2°). Thus, a slight increase in
rotation errors leads to a considerable drop in recall rate under the
high-precision interval. Nevertheless, the 75th percentile of pose
estimation errors for PIPE (0.07m and 2.3°) is close to the baseline
(0.06m and 1.9°). Compared with Random, PIPE improves pose es-
timation accuracy under high-level precision by 8.4%. Moreover,
PIPE achieves recall rates similar to the baseline under medium and
low-precision intervals. Our observations from the GreatCourt and
NYU depth datasets are consistent with the findings on the Aachen
and 7Scenes datasets.

Table 6 shows the pose estimation accuracy of PIPE on the
Aachen dataset with localization images at resolutions of 1600×1200,
1024×768, 768×576, and 512×384. Similar to our findings in §4.1,
reducing the resolution from 1600×1200 to 1024×768 has limited
impacts on pose estimation accuracy (88.0% vs. 87.9% for high-
precision), while further reductions lead to lower accuracy (<80.5%).

To further explore how the pose estimation accuracy varies
among different levels of privacy protections, we conduct experi-
ments by varying 𝑝 from 10 to 40 at the step of 10 to show the pose
estimation accuracy. Figure 7 shows the pose estimation errors for
the Aachen and 7Scenes datasets. In these plots, we depict the 25th

and 75th percentiles, medium, mean (green dots), and lower and
upper whiskers [36]. As shown in Figure 7, pose estimation errors
decrease as we include more features, consequently incorporating
more inliers for pose estimation. While PIPE can deliver reason-
ably accurate pose estimation when using only 10% features, users
who are willing to accept lower-level protection can benefit from
improved pose estimation.

6.4 Transferability of Ranking Model
We further show that the feature-ranking model is transferable
across different maps, enabling rapid training that facilitates the
application of PIPE across various maps to cover wide areas. In our
experiment, we partition the Aachen map into two parts,MapA and
MapB. This segmentation utilizes the spatial coordinates of map
images and horizontally bisects the map at its median coordinate.
Certain areas from MapA may be visible in images from MapB, and
vice versa. To ensure the robustness of the experimental design, we
judiciously remove areas that are discernible from both MapA and
MapB. We also evaluate the 7Scenes dataset, using similar methods
to separate the map into MapA and MapB.

We train two feature-ranking models with 80% of randomly
selected map features from MapB, with the remaining 20% for val-
idation. The first model, referred to as Scratch, trains with only
map features fromMapB. The second model, referred to as Transfer,
transfers a pre-trained model, which is trained with all map fea-
tures from MapA, and fine-tunes it with map features from MapB.
Figure 8 shows that the Transfer model reaches convergence in
around 35 minutes, reducing the training time by more than 56%
compared with Scratch, which requires over 80 minutes.

Furthermore, we evaluate the pose estimation accuracy on𝑀𝑎𝑝𝐵

of Aachen and 7Scenes datasets with four ranking models. We train
the baseline model using the map images from𝑀𝑎𝑝𝐵 over the full
epochs. The other three models include a pre-trained model using
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Stage Feature Feature Feature Transmission Matching & P3P E2E
Extraction Ranking Selection RANSAC on Server

Baseline 137±5.5 N/A N/A 28±5 937±186 ∼1,102
10% Random

219±16

N/A <1 4.9±0.6 490±124 ∼749
10% PIPE (SIFT)

125±38 14±11
∼853

20% PIPE (SIFT) 6.4±1.1 608±142 ∼973
40% PIPE (SIFT) 7.9±1.6 729±160 ∼1,095
10% PIPE (SURF) 73±12 127±36 15±10 5.1±0.6 501±127 ∼721
10% PIPE (ORB) 49±6 67±17 11±8 2.1±0.4 224±79 ∼354

Table 8: Latency (ms) comparison of PIPE and the baseline system.

map images from 𝑀𝑎𝑝𝐴, a model that we train from scratch on
𝑀𝑎𝑝𝐵 for 30 minutes, and a model that is transferred from the
pre-trained model to 𝑀𝑎𝑝𝐵 with 30 minutes of training. We also
evaluate the 𝑅𝑎𝑛𝑑𝑜𝑚 method for comparison.

Table 7 shows that the feature-ranking model is transferable
across different maps, enabling rapid training and effective adapta-
tion to new environments. Compared with 𝑅𝑎𝑛𝑑𝑜𝑚, the pre-trained
model from MapA marginally increases the pose estimation accu-
racy, with a 4.5% and 2.5% increase on the Aachen and 7Scenes
datasets, respectively, under the high-precision interval. This im-
provement is attributed to the shared structural and characteristic
similarities in the features from both maps. Furthermore, transfer-
ring the pre-trained model on 𝑀𝑎𝑝𝐵 for 30 minutes enables the
model to acquire new characteristics from 𝑀𝑎𝑝𝐵 features. Con-
sequently, this model’s pose estimation accuracy is comparable
to the model trained over the full epochs (>200 minutes). On the
other hand, compared with the baseline, the model that trains from
scratch for 30 minutes shows a 4.9% and 3.8% decrease in the two
datasets, respectively, under the high-precision interval.

6.5 End-to-end Latency
We measure the end-to-end latency of PIPE by breaking it into
client-side feature preparation, data transfer, and server-side pose
estimation. We show the results in Table 8. Using the Aachen
dataset, we evaluate PIPE with 𝑝 set to 10, 20, and 40 for different
levels of protection (i.e., satisfying almost all, 75% and 50% users).

PIPE’s client-side latency is 358±66 ms, with 219±16 ms for fea-
ture extraction, 125±38 ms for ranking, and 14±11 ms for selection.
The network latency is around 4.9±0.6 ms (𝑝=10), 6.4±1.1 ms (𝑝=20),
and 7.9±1.6 ms (𝑝=40). The server-side latency, which consists of
feature matching and P𝑛P RANSAC, takes on average 490±124 ms
(𝑝=10), 608±142 ms (𝑝=20), and 729±160 ms (𝑝=40). Thus, the av-
erage end-to-end latency of PIPE is around 853 ms (𝑝=10), 973 ms
(𝑝=20), and 1,095 ms (𝑝=40). Compared with Random, PIPE signif-
icantly boosts pose estimation accuracy with an extra latency of
only around 104 ms for on-device feature ranking and selection.
As a result, we believe the latency is well-suited for practical use,
as only keyframes are utilized for server-based localization, and
the process is primarily for map alignment rather than continuous
real-time tracking (§3).

We also compare PIPE with the baseline system that sends im-
ages for pose estimation without privacy protection. The images’
resolutions are the same for an apple-to-apple comparison. Due
to more features to match and for P𝑛P RANSAC, the baseline’s

computational load increases significantly, resulting in an average
end-to-end latency of around 1,102 ms. In comparison, PIPE reduces
end-to-end latency across all protection levels, saving around 22.6%,
11.7%, and 0.6% for high, medium, and low-level protections, re-
spectively. Furthermore, compared with leveraging SURF and ORB
features for pose estimation, SIFT offers higher accuracy at the
expense of increased computation latency. However, as discussed
in §3, PIPE focuses on the localization of keyframe images, where
accurate pose estimation is the most important, making SIFT the
preferred choice.

6.6 Energy Consumption
To profile the energy consumption of PIPE, we execute it on Sam-
sung Galaxy S22+ for 2 hours. We compare PIPE with two baseline
systems that upload either captured images or all of the extracted
features from them to a server for pose estimation. We start each
experiment on the fully-charged device. After the 2-hour experi-
ment, the battery level decreases from 100% to 78% for uploading
images, to 72% for extracting and uploading features, and to 68%
for PIPE. The differences in energy consumption come from the
locally performed feature extraction, ranking, and selection in PIPE.
Overall, we believe the energy consumption of PIPE is acceptable.

7 Discussion
Privacy Leakage vs. Information Leakage. Addressing privacy
leakage in the context of image-based pose estimation is a distinct
challenge, due to the subjective nature of privacy [21, 57, 107]. How-
ever, privacy leakage is closely related to the broader and more
objective concept of information leakage. Information leakage in-
volves unauthorized access or dissemination of potentially sensitive
or valuable data, whether or not it is personally identifiable, and
is inherently more measurable and quantifiable. Privacy leakage,
in contrast, specifically pertains to personal data, which can vary
greatly among individuals, making it harder to define and quantify.
Because of this relationship, privacy leakage is a subset of informa-
tion leakage. Hence, by addressing the wider issues of information
leakage, we can indirectly mitigate the risks of privacy breaches.
Fully Homomorphic Encryption (FHE) & Multi-party Com-
putation (MPC) are powerful cryptography techniques, but they
may not be suitable for pose estimation. FHE [46] allows computa-
tions to be carried out on encrypted data without decrypting it [46].
However, FHE struggles to solve the non-polynomial operations
P𝑛P [105], and replacing P𝑛P with direct linear transformation
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(DLT) [52], which simplifies pose estimation by linearizing it, re-
sults in degraded pose estimation accuracy [105]. Additionally, FHE
dramatically increases computation overhead [14, 71] and data
size after encryption (e.g., >3000× [105]), making it impractical for
real-time applications. Similarly, MPC [49], which allows multiple
parties to jointly compute a function while keeping their inputs
private, incurs high communication overhead. For instance, data
transmission for a single image localization can exceed 64GB [32],
leading to substantial delay.
Machine-learned Features. To validate the generalizability of
PIPE, we explore its effectiveness with machine-learned features
such as Superpoint [37] on the Aachen dataset, setting 𝑝 to 10.
The number of Superpoint features is comparable with SIFT. Our
results indicate PIPE still performs better than 𝑅𝑎𝑛𝑑𝑜𝑚. For the
high-precision interval, 𝑅𝑎𝑛𝑑𝑜𝑚 and PIPE result in a 6.2% and 3%
recall drop, respectively. This comparative analysis further affirms
the generalizability and efficacy of PIPE. Note that while Superpoint
provides more accurate pose estimation than SIFT and ORB with its
superior matching ability [37, 85], the high computational overhead
associated with Superpoint makes it unsuitable for real-time pose
estimation. Moreover, Superpoint leaks more privacy than SIFT,
probably due to its higher feature dimensions (256 in Suerpoint vs.
128 in SIFT). For example, for outdoor scenes, the average privacy-
leakage level from images reconstructed from 10% of SIFT features
is only 1.6, while a similar number of Superpoint features results
in a leakage level of 2.5, equivalent to using around 30% of SIFT
features for image reconstruction.
Privacy-leakage Metric. In our work, we propose a new metric,
pLEAK, as existing metrics are not directly applicable in image-
based 6DoF pose estimation for mobile devices. Differential pri-
vacy [41] primarily focuses on statistical data and may not be
able to directly resolve privacy concerns in visual data targeted by
PIPE. Specifically, when privacy leakage arises from identifiable vi-
sual features utilized for pose estimation, traditional noise addition
techniques may fall short, resulting in poor pose estimation accu-
racy [79]. The goal of pLEAK is to provide a practical metric closely
aligned with human perceptions of privacy. As such, pLEAK is not
a foundational guarantee of privacy preservation but a measure of
perceived privacy leakage. While its effectiveness may vary with the
development of more advanced algorithms, the same technology
can be repurposed to maintain utility.
Improving Feature Ranking. To improve the generalizability of
feature ranking, incorporating a complex CNNmodel that takes full
image content instead of features’ descriptors as input can capture
broader contextual information. This approach allows the model
to adapt to diverse environments more effectively. However, the
increased model complexity may introduce significant computa-
tional overhead, including higher inference latency and greater
energy consumption, making it unsuitable for mobile devices. To
address these challenges, future work may explore model distilla-
tion to enhance generalization while maintaining efficiency. In this
framework, a high-capacity teacher network is first trained to learn
a robust and adaptable feature ranking strategy across different
scenes. A smaller student model is then optimized to distill the
teacher network’s ranking capability on a specific map to reduce
computational demands substantially. This method can potentially

enable feature ranking models to maintain adaptability across vary-
ing environments while remaining efficient for real-time processing
on mobile devices.

8 Related Work
Privacy-preserving Vision Techniques. To address privacy con-
cerns from users, various schemes have been proposed to protect
sensitive visual information [40, 48, 82, 90, 95, 96]. For example,
Dusmanu et al. [40] propose to embed feature descriptors to affine
subspace to conceal private content. Another line of work obfus-
cates feature positions by representing feature points with lines
in 2D [96] and 3D spaces [48, 90, 95]. Instead of concealing fea-
ture positions or descriptors, PIPE reduces the number of uploaded
features to mitigate privacy leakage in localization images.
Privacy-preserving Applications. Privacy preservation has been
widely studied for various applications [15, 27, 30, 31, 33, 62, 80,
103, 109, 110]. For example, YANA [62] protects each user’s pri-
vate interests from the recommendation server by grouping users
with diverse interests. MetaFL [31] leverages federated learning
to preserve privacy for authentication in virtual reality. I-Pic [15]
utilizes privacy defined by nearby users to edit captured images for
privacy preservation. Previous studies employ securely reversible
transformed images [103], differential privacy [27], and trusted ex-
ecution environments (TEE) [80] for video analytics. PIPE targets
a different application and protects privacy in the images that are
sent to the server for localization.
Privacy-preserving Localization. Preserving privacy has been a
key research topic in different types of localization techniques, espe-
cially for fingerprint-based WiFi localization [22]. Commonly used
methods include efficient location obfuscation algorithms [91] such
as𝑘-anonymity [61, 111], homomorphic encryption [19, 63, 93, 108],
secure two-party computation [56], and antenna pattern synthe-
sis [101]. Different from the above work, image-based pose estima-
tion systems may leak more sensitive (environmental) information
captured in images than WiFi-based schemes.

9 Conclusion
In this paper, we designed, implemented, and evaluated PIPE, a
practical system for privacy-preserving image-based 6DoF pose
estimation of mobile devices. Building on the key insight that se-
lective upload of a small fraction of features could protect private
information in localization images, we addressed various challenges
such as computation-intensive on-device feature extraction, feature
ranking with limited knowledge, reduced pose estimation accuracy
with clustered high-ranking features, and effective quantification of
privacy leakage in images. Our extensive performance evaluation
showed that PIPE effectively preserves privacy with limited impact
on pose estimation accuracy and reduces end-to-end latency by up
to 22.6% compared with the baseline.
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