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Abstract

Offering high-quality immersive content is the ultimate goal
of volumetric video streaming. Although point clouds and
meshes are dominant volumetric representations, their limi-
tations in depicting photo-realistic content often undermine
user experience. The recent advent of neural radiance fields
(NeRF) offers a promising alternative content representa-
tion with superior photo-realism. However, streaming NeRF-
based volumetric videos over wireless networks to mobile
headsets faces significant challenges, including substantial
bandwidth usage because of the large frame size, degraded
visual quality due to even a low packet loss rate, and content
artifacts caused by performance optimizations (e.g., remote
rendering at the network edge). To address these challenges,
in this paper, we introduce NeVo, a next-generation volumet-
ric video streaming system for efficient delivery of neural
content such as NeRF. NeVo incorporates the following inno-
vations into a holistic system: (1) a novel method to model
visibility of implicitly encoded neural content, thereby avoid-
ing non-essential transmission to drastically reduce network
data usage, (2) a lightweight, learning-based model for real-
time content reconstruction after packet loss with carefully
chosen data, and (3) judicious identification and selective
delivery of intermediate data in edge-based NeRF rendering
to effectively mitigate artifacts. Our extensive experiments
indicate that compared with the state-of-the-art, NeVo saves
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up to 68.3% of bandwidth usage, maintains high visual qual-
ity despite packet loss, and enhances user experience by
reducing artifacts.
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1 Introduction

Holographic communication [24], a key use case envisioned
for 6G [74, 80], centers on achieving an interactive and
engaging user experience. This communication paradigm
benefits from delivering immersive content to represent
3D scenes, allowing users to change viewing perspectives
with six degrees of freedom (6DoF) motion. While recent
efforts [35, 43, 51, 52, 91, 99, 100] focus on the streaming of
volumetric videos based on explicit 3D representations such
as point clouds [16] and meshes [11], they oftentimes fall
short of photo-realistic rendering [39, 47, 94, 95], degrading
the quality of experience (QoE). This issue arises because
point clouds and meshes struggle to accurately depict dy-
namic elements [62, 69] and lighting effects [25, 83], owing
to their nature of discrete content representation.

Neural radiance fields (NeRF) [56] is a novel, implicit con-
tent representation that models a 3D scene with a continuous
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Figure 1: Left: volumetric content represented by NeRF (a)
has better visual quality than point cloud (b). Right: Quali-
tative comparison of NeVo and volumetric video streaming
with vanilla NeRF and point clouds (PtCl).

function by training a multi-layer perception (MLP) model.
As shown in Figure 1 (left), NeRF can capture the detailed ap-
pearance of the human body and demonstrates much better
visual fidelity than point clouds, which often result in low-
quality content (e.g., visible holes) due to discretized point
distribution. While NeRF offers a more visually appealing
experience, which makes it a suitable alternative for deliv-
ering volumetric content over wireless networks to mobile
headsets, realizing NeRF-based volumetric video streaming
in practice poses the following key challenges.

e Bandwidth: Delivering high-quality neural content incurs
significant bandwidth consumption, for example, >1 Gbps
when streaming vanilla NeRF [76] (i.e., its MLP model) at
30 frames per second (FPS), which is required for real-time
volumetric video streaming [32, 35, 41, 51, 91, 99].

e Resiliency: Due to the large size of neural content [56, 57, 63,
71, 84], even a low packet loss rate may result in numerous
lost packets, leading to poor visual quality or video stalls.

e QoF: Content reprojection, which is essential for streaming
remotely pre-rendered! neural content with predicted future
viewport by aligning it with users’ actual viewport [4], may
produce artifacts [33, 42, 51, 52].

In this paper, we present NeVo, which is, to the best of
our knowledge, the first volumetric video-on-demand (VOD)
streaming system that explores neural content representa-
tions. NeVo employs an edge-assisted architecture, where
the edge fetches neural content from a server, performs NeRF
rendering, and sends rendered content to the client. We qual-
itatively compare NeVo and volumetric video streaming with
vanilla NeRF and point clouds in Figure 1 (right). To address
the aforementioned challenges, NeVo incorporates the fol-
lowing innovative solutions into a holistic system.

Optimizing Network Bandwidth Consumption (§3.2).
State-of-the-art streamable NeRF in the computer vision
community such as ReRF? utilizes shallow MLPs and voxels

IRemote rendering of neural content on an edge server is necessary, due to
the high computation overhead of NeRF, even with recent advancements in
lightweight models and accelerated rendering [46, 63, 71, 73, 84].
Note that ReRF [84] lacks an end-to-end system design. We integrate ReRF
into our streaming framework to evaluate its performance in §5.

Nan Wu, Bo Chen, Ruizhi Cheng, Klara Nahrstedt, and Bo Han

that store color features and density values of the scene
to accelerate rendering [84]. These voxels are referred to
as feature voxels (i.e., feature values arranged in a 3D grid).
Even after compression, ReRF may still require a bandwidth
of 150+ Mbps. While visibility-aware optimizations, which
selectively deliver mainly visible volumetric content, can
reduce bandwidth consumption, they are typically designed
for point-cloud-based systems, for which the visibility of
points can be simply estimated based on their positions [35].
However, NeRF captures complex light interactions within a
scene by considering refraction, reflection, and scattering of
light, making the existing definition of visibility ill-suited. For
instance, the content behind semi-transparent objects (e.g.,
window glass) remains visible, but position-based visibility-
aware optimizations deem it invisible due to occlusion.
Our key observation is that the weights (e.g., opacity and
transmittance) of sampled points in NeRF’s ray marching?,
defined by us as neural visibility, indicate their importance
to neural rendering. Thus, NeVo quantifies the importance
of a feature voxel by examining the neural visibility of all
sampled points in it and filters out unimportant voxels via
learned thresholds, which can greatly reduce bandwidth
consumption without noticeable visual quality degradation.

Recovering from Content Loss (§3.3). Packet loss in-
cludes both packets dropped during transmission and those
not received before the decoding deadline [23, 45, 55], pos-
ing significant challenges to NeRF-based volumetric video
streaming. Traditional schemes usually rely on retransmis-
sion, which causes extra latency, or forward error correc-
tion (FEC) [3] that faces difficulty in accurately predicting
packet loss rate for adding a proper amount of redundant
data for recovery [23, 55]. Recent endeavors for 2D video
streaming [23, 45, 93] show that deep-learning models can
reconstruct lost content with correctly received data. How-
ever, since the raw data size of frames with neural content for
model training is much larger than that of 2D video frames
(e.g., ~800 MB [84] vs. ~6 MB for 1080p), a recovery model
for neural content could be complex, resulting in substantial
computation latency and memory usage (§3.3).

Our key observation is that NeRF content is spatially cor-
related in a confined space and temporally correlated within
a short time window, which enables a potentially signifi-
cant reduction in training data. NeVo leverages such spatial-
temporal correlation to restore missing content from judi-
ciously selected data, instead of entire frames, by training
a simple yet effective model for real-time reconstruction.
While 2D videos can also leverage the correlations for recon-
struction, their efficiency gains may be less than NeVo. The

3Ray marching samples 3D points along rays from the viewpoint to each
pixel of the rendered image by accumulating their color and density values.
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reason is that 2D videos are captured through 3D to 2D pro-
jection, where even a small content movement can result in
a large displacement in 2D frames, especially when the con-
tent is close to the camera. This often necessitates training
with a large area of content for accurate reconstruction.

Alleviating Reprojection Artifacts (§3.4). Reprojection is
essential in streaming remotely rendered content over wire-
less networks to mobile headsets, by aligning pre-rendered
content from the edge server with the user’s actual view-
port to correct potential mismatch [4]. Without reprojection,
there may be visible drifts of displayed content, notably de-
grading user experience [42]. However, when background
content occluded by the foreground in the pre-rendered view
becomes visible in the client’s actual viewport, artifacts (i.e.,
missing pixels) will occur (§2.2). While delivering additional
data for occluded content can mitigate these artifacts, the
challenge lies in accurately and efficiently identifying the po-
tential artifact locations from implicitly encoded neural content
on the edge server, without knowing users’ actual viewport.

Our key observation is that when the previously occluded
background becomes visible, missing pixels are usually lo-
cated near the contours of foreground objects (§3.4). The
distribution of opacity, a key attribute of ray-marching sam-
pled points, can be used to identify contours. Thus, NeVo
alleviates reprojection artifacts by transmitting only neural
content around those contours.

Implementing and Evaluating NeVo (§4, §5). We build a
prototype of NeVo and thoroughly evaluate its performance
via controlled experiments and an IRB-approved user study.
e Compared with ReRF [84], NeVo reduces network data us-
age by up to 68.3%. Meanwhile, it does not affect visual qual-
ity, as its structural similarity index measure (SSIM) [87], a
well-known metric for visual quality, is higher than 0.98 [26].
e NeVo’s content recovery enables high-quality streaming
in networks experiencing packet loss (e.g., improving SSIM
from 0.759 to 0.902 when packet loss rate is >50%).

e NeVo effectively mitigates reprojection artifacts. When the
viewport prediction error is >4 cm (covering >50% of traces
in a large viewport-trajectory dataset [91]), it increases SSIM
from 0.899 to 0.923 with noticeable quality improvements.
e Subjective evaluations of user experience from 122 partici-
pants demonstrate that NeVo outperforms point-cloud-based
volumetric video streaming systems Vues [51] and ViVo [35]
by 73.9% and 90.4%, respectively.

2 Background and Motivation

2.1 Background

Conventional Volumetric Content Representations in
existing streaming systems primarily center on explicit geo-
metric structures such as point clouds [32, 35, 51, 91, 99,
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100] and meshes [41, 49]. Point clouds are effective for non-
manifold structures [28] but can lead to artifacts due to a lack
of spatial connectivity [66, 75]. Meshes provide detailed sur-
faces and efficient rendering [17, 50], yet their fixed topology
limits the modeling of dynamic topological changes [53, 58]
and struggles with occlusions and optical effects [25, 83].
Neural Radiance Fields. Recent developments in neural
networks result in advanced methods for volumetric con-
tent representations. Among them, NeRF [56] utilizes MLP
to form an implicit and continuous depiction of scenes, en-
abling the rendering of photo-realistic content. Existing re-
search on NeRF mainly explores efficiency optimizations
through techniques such as sparse geometric representa-
tions [18, 31, 78, 84, 97], voxel compression [79], and voxel de-
composition [12]. Beyond that, more recent research extends
NeRF to represent dynamic scenes [30, 60, 61, 71, 73, 85].
NeRF Rendering leverages ray marching for content cre-
ation [56]. Taking the viewer’s position as the origin, it gen-
erates rays for pixels of the to-be-rendered content, samples
points on the ray, and derives their color with the trained
model. These points are used to synthesize the pixels as
follows: C(r) = Zfil T; - a; - c;, where a; = 1 — exp(—0;6;)
and T; = H;;ll(l - a;). Here, C(r) denotes the color of a
rendered pixel, derived from the cumulative contributions
of N sampled points along ray r. Each point’s contribution
is determined by its color c;, alpha value «;, and accumu-
lated transmittance T; [56]. ;, reflecting the point’s opac-
ity, is influenced by its density o; and the distance between
samples §;. The transmittance T; represents the cumulative
transparency along the ray up to the i-th point. Thus, NeRF
accumulates the color and intensity of sampled points as
light travels in the 3D space.

Streamable NeRF. NeRF was initially designed for static
scenes, and early attempts to extend it for dynamic scenes
involved adding the time dimension to NeRF [30, 92] or us-
ing an additional MLP to learn deformations [60, 61, 65]. To
handle long-sequence videos, ReRF [84] relies on groups of
features (GoF), wherein each group starts with a leading
intra-coded frame (i.e., I-frame) that encapsulates complete
voxel features, followed by multiple predictive frames (i.e.,
P-frames) containing only motion vectors and residual fea-
tures. Moreover, ReRF employs principal component analysis
(PCA) [34], 3D discrete cosine transformation (DCT) [44],
and entropy coding [84] for variable bitrate encoding.

2.2 Motivational Study

Visibility-aware Optimizations. Visibility-aware optimiza-
tions introduced in ViVo [35] are pivotal for reducing band-
width usage by selectively delivering mainly visible volumet-
ric content for a given viewport. However, they are designed
for point-cloud-based systems, for which content visibility
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Figure 2: Content rendered with (a) and without (b) tradi-
tional visibility-aware optimizations.

(@) i (b) i

Figure 3: Ground truth (a) and rendering artifacts (b) caused
by packet loss.

can be simply estimated based on points’ positions and is ag-
nostic to the content itself. In Figure 2, we present a scenario
where the content behind a window glass is visible to the user.
We follow the occlusion-aware algorithm in ViVo [35] to re-
duce the visual quality of “occluded” content. As observed,
this approach overlooks complex light interactions captured
in NeRF (e.g., with semi-transparent materials), leading to
an unintended reduction in the quality of content behind
the glass (Figure 2(a)). Ideally, as shown in Figure 2(b), the
quality should remain high due to the content’s visibility.

By leveraging the unique properties of ray marching in
NeRF rendering, NeVo introduces novel neural visibility to
assess voxels’ importance to rendering, which allows for
selective transmission that reduces bandwidth usage without
compromising visual quality.
Reliable Streaming. Packet loss can make feature voxels
not decodable, leading to missing voxels that degrade vi-
sual quality (e.g., distorted hands shown in Figure 3). While
retransmission and FEC [3] have been proposed to handle
lost packets in 2D video streaming, they are impractical
in this context (as discussed in §1). Recent endeavors in
2D video streaming have shown that deep-learning models
can reconstruct lost content by utilizing correctly received
data [14, 23, 45, 93]. However, because the size of NeRF con-
tent is significantly larger than that of a 2D video frame (e.g.,
800 MB [84] vs. 6 MB in raw data), applying such recovery
models in this context results in substantial computational
latency and GPU memory usage. We train a model that uti-
lizes full frames as inputs. The results show a reconstruction
time of >60 ms and memory usage of >16 GB on an NVIDIA
GeForce RTX 4090 GPU, making this approach unsuitable
for NeRF-based volumetric video streaming.

These challenges motivate the design of NeVo’s light-
weight learning-based mechanism, which reduces input size

Figure 4: Ground truth and reprojection artifacts with trans-
lational prediction error of 10 cm (middle) and 20 cm (right).

by focusing on the most relevant voxels across frames, en-
abling timely recovery of lost content.

Content Reprojection. Existing schemes [4, 42] benefit
from RGB and depth data* of displayed content for the re-
projection into different viewports. However, as shown in
Figure 4, for a pre-rendered view on the edge, the absence
of RGB and depth data for occluded content leads to miss-
ing pixels after reprojection to the actual view on the client.
While Outatime [42] leverages interpolation to fill the pixels,
it often causes blurred artifacts. To address this problem,
additional data for occluded content is needed. A naive so-
lution is to transmit all ray-marching sampled points to the
client for reprojection, since they include both visible fore-
ground and occluded content, allowing for reprojection to
the user’s actual viewpoint without missing pixels. However,
doing this significantly increases bandwidth usage (e.g., ~2.4
Gbps after compression), and reprojection with all points is
computationally intensive (e.g., <1 FPS on HoloLens 2 [2]).

These challenges motivate NeVo to design an efficient
reprojection approach for remote-rendered NeRF content,
which transmits only critical points that can effectively fill
missing pixels, reducing bandwidth usage and computational
overhead while maintaining high reprojection quality.
NeRF vs. 3D Gaussian Splatting. Compared with NeRF, 3D
Gaussian splatting (3DGS) [39] has recently demonstrated
notable advancements in reducing rendering overhead and
accelerating training, by augmenting point clouds with learned
Gaussian parameters. However, despite these improvements,
3DGS and NeRF usually render content with comparable
visual quality [39, 48, 89], and NeRF can already achieve the
30-FPS rendering required by video streaming on commer-
cial machines with efficiency optimizations [31, 57, 97]. On
the other hand, 3DGS may require higher bandwidth for
video streaming. For instance, streaming the longdress video
from the 8i [1] dataset using ReRF [84] necessitates a band-
width of ~210 Mbps, while it may demand >400 Mbps for
SpacetimeGaussians [48], a state-of-the-art 3DGS scheme.
Thus, we focus on NeRF in this paper as a promising starting
point for advancing volumetric video streaming and leave
the exploration of 3DGS as future work.

4An accurate depth image boosts reprojection quality by offering a 3D
understanding of the scene [42].
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Figure 5: System architecture and workflow of NeVo.

3 System Design of NeVo

3.1 Overview

Similar to the design of traditional content delivery networks
(CDN), in NeVo, the content server stores NeRF-based volu-
metric videos, and mobile clients request data from it [82].
However, due to the high computational demands of render-
ing NeRF-based video, the client should offload computation-
intensive tasks to an edge server for real-time NeRF render-
ing. Unlike traditional 2D video, NeRF stores content as a
large set of parameters. As introduced in §2.2, even with
compression, fetching the entire parameter set can consume
significant bandwidth (e.g., >200 Mbps). To address this chal-
lenge, NeVo optimizes the streaming between the content
server and the edge server to reduce bandwidth consumption
and mitigate the effects of packet loss. Since this optimiza-
tion relies on predicting the viewer’s viewport, we do not
prefetch or buffer video frames several seconds in advance,
even though NeVo targets VoD streaming. This avoids po-
tential degradation of streaming quality that is caused by
increased prediction errors associated with the extended pre-
diction window size [35]. The components in edge-to-client
streaming address the visual artifacts in reprojection caused
by inaccurate viewport prediction.

Figure 5 depicts the system architecture of NeVo. Based
on the viewport trajectory sent by NeVo’s client, the edge
fetches NeRF’s feature voxels from the content server with
visibility-aware optimizations (§3.2). When packet loss hap-
pens, NeVo reconstructs missing feature voxels with a learning-
based approach (§3.3). To accommodate potentially inaccu-
rate viewport prediction on the edge, NeVo’s edge selects
and transmits ray-marching intermediates, which is utilized
to mitigate reprojection artifacts (§3.4).

3.2 Optimizing Bandwidth Consumption

Problem & Challenges. High bandwidth consumption is a
critical issue in NeRF-based volumetric video streaming (§2.1),
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which motivates us to incorporate visibility-aware optimiza-
tions for reducing network data usage. However, NeRF cap-
tures intricate light characteristics to represent phenomena
such as refraction, reflection, and scattering, making the ex-
isting definition of visibility ill-suited. As illustrated in §2.2,
existing optimizations target explicit content representations
such as point clouds [35], where content visibility can be
simply estimated based on points’ locations. These optimiza-
tions cannot be directly applied to NeRF-based content, as
they may fail to determine the visibility of feature voxels.
Solution. Our key insight is that in ray marching for NeRF
rendering, the color of a pixel, given by the function C(r) =
YN Ti-a; - c;, is the weighted sum of sampled points’ colors
along the marched ray. Importantly, the removal of points
with low weight negligibly affects visual quality. Thus, the
weight can reflect the neural visibility of sampled points, in-
dicating their importance to neural rendering. Based on this
observation, we propose to define a voxel’s importance as the
highest neural visibility of all ray-marching sampled points
inside it and select only important voxels to stream, as shown
in Figure 6. More specifically, we leverage the weight T;a;
(§2.1) in NeRF’s ray marching algorithm [56] to describe
sampled points’ neural visibility.

Figure 7 shows the cumulative distribution function (CDF)
of the importance scores for non-empty voxels across 22
widely-used videos (§5.1), with each frame tested against
300 different viewports. We observe a long-tail pattern, in-
dicating that the majority of voxels have relatively low im-
portance. For example, with a threshold of 0.025, ~60% of
voxels could be removed from delivery. We measure the SSIM
of rendered content after removing those voxels, with the
ground-truth content rendered with all voxels involved. The
SSIM consistently exceeds 0.98 (i.e., visually lossless [26]),
indicating that removing these voxels does not impact visual
quality, while greatly reducing the amount of network data.

The threshold selection necessitates careful design to bal-
ance the trade-off between bandwidth consumption and ren-
dering quality. While we can increase the threshold to filter
out more voxels and further reduce bandwidth consumption,
it leads to degraded rendering quality. For instance, in the
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kpop video from the ReRF dataset, increasing the threshold
from 0.025 to 0.04 reduces the SSIM from 0.986 to 0.959, but
the data saving increases from 62% to only 64%. To balance
the above trade-off, we propose to dynamically adjust the
importance threshold as a per-video hyperparameter of the
trained NeRF content. This is done by adding another loss
function to optimize the threshold, in addition to the one
for NeRF training. We include SSIM in this loss function,
defined as Loss = SSIMr — SSIMc, to guide the hyperparam-
eter selection. If the current SSIMc falls below the target
SSIMr (e.g., 0.98 for lossless visual quality), the loss function
will be positive, prompting a decrease in the threshold to
retain more voxels and improve visual quality. The computa-
tional demand of hyperparameter tuning primarily involves
rendering NeRF content from various viewports, which is
lightweight compared with training the NeRF content. For ex-
ample, using an NVIDIA GeForce RTX 4090 GPU, we render
3,000 viewports for each frame during the threshold tuning,
and it adds less than 7% overhead to the training time.

Ideally, when the edge fetches feature voxels of a video, it
should calculate the voxels’ importance scores based on the
predicted viewport of the frame and filter out unimportant
voxels with the video’s threshold. However, the to-be-fetched
frame is not yet available for the edge to determine voxels’
importance scores. NeVo addresses this issue by first select-
ing important voxels based on the just received frame and
then adjusting the voxel selection with motion vectors (§2.1)
that could be delivered several frames ahead. For example,
the edge could fetch the feature voxels of frame T along with
the motion vectors of frame T+3. The vectors are lightweight
(e.g., 8 KB for each frame) and could be kept in memory for
several frames (e.g., until frame T+3 is rendered).

NeVo includes additional voxels around the selected ones,
extending coverage by 20 cm, to accommodate potentially
inaccurate viewport prediction. Assume a prediction window
of 132 ms (i.e,, four frames), covering the computational
latency on NeVo’s edge and client (§5.5) and the transmission
delay of 5G networks (§5.1). When the viewer moves at an
average speed of 1.42 m/s [10], the translational error without
prediction is ~18.8 cm.

3.3 Recovering from Content Loss

Problem & Challenges. Packet loss can lead to missing
voxels, which results in noticeable artifacts in rendered con-
tent or video stalls, degrading user experience (§2.2). Thus,
effectively recovering missing voxels is essential to main-
tain a high QoE in NeVo. As illustrated in §2.2, recent ap-
proaches [23, 45, 54, 93] for 2D video streaming indicate
that leveraging deep-learning models to recover lost content
from correctly received packets is a promising method to
achieve reliable real-time streaming. However, the large size
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Figure 8: VRM model architecture for content reconstruc-
tion. The input size is adjustable and can be larger than the
illustrated 3x3x3 grid, depending on content movement.

of NeRF content can lead to a complex recovery model with
substantial computational latency and memory usage.
Solution. Our key observation is that content movement in
neural-based volumetric videos is usually confined to a lim-
ited number of feature voxels in 3D space. For instance, when
the content moves at 2 m/s (i.e., the upper bound of walk-
ing speed), the motion vector between frames is typically
within two feature voxels. This confined movement shows
strong inter-frame content similarity, aligning with princi-
ples widely used in 2D video compression techniques [77, 88].
Thus, instead of using all voxels from previous frames as
inputs, NeVo reconstructs a missing voxel by tracing only
voxels at the same location in historical frames and their
neighbors within a confined grid determined by the extent
of content motion. For example, when the movement spans
two voxels, which covers >99% of movements in 21 diverse
videos (§5.1), we select neighbors in a 3x3x3 grid. In extreme
cases where movement spans multiple voxels, we enlarge
the grid to encompass more neighboring voxels.

Based on this observation, we propose a lightweight voxel
recovery model, named VRM, that takes a sequence of his-
torical voxels in N previous frames and their neighbors as
inputs, as shown in Figure 8. We process the data in each his-
tory frame with a 3D convolutional neural network (CNN) to
identify spatial patterns of feature voxels. The extracted fea-
tures from CNN are passed through long short-term memory
(LSTM) [36] units to maintain temporal continuity across
frames. The value of N, empirically set as 9 (§4), is deter-
mined by balancing memory usage, computation overhead,
and reconstruction quality.

Our training goal is to ensure the resulting model can
recover missing feature voxels, considering that correctly
received voxels may vary due to not only packet loss but also
visibility-aware optimizations (§3.2). Existing methods for
2D videos [23, 45] simulate packet loss by randomly mask-
ing data as lost during training. However, this approach is
inadequate because the training data does not account for
the availability of voxels for reconstruction that is caused by
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visibility-aware optimizations. Unlike 2D videos, where all
content in a frame is delivered and the training of reconstruc-
tion models simulates only packet loss, VRM must generalize
to available content based on voxels’ neural visibility under
different viewports. Although we can follow the modeling
of voxel importance in §3.2 for data augmentation, the in-
volved ray marching is time-consuming, especially when we
augment with a large number of different viewports.

We introduce a lightweight method for coarse visibility de-
termination. Instead of marching rays for pixels, we generate
rays for the selected training voxels (e.g., 27 rays for 3x3x3
neighbors) to reduce computation overhead. The rays start
from the viewpoint and end at the centers of the selected
voxels. As these rays traverse the scene, they intersect with
other feature voxels, including those not used for training
but in front of the selected ones on the rays. These voxels
are used to determine the neural visibility of the selected
voxels (§3.2), and we mask voxels that will not be delivered
by setting their values to zero. Our tests show that compared
with pixel-level ray marching, this approach significantly
reduces data augmentation time by >100x while offering
comparable performance in reconstructing content.

3.4 Alleviating Reprojection Artifacts

Problem & Challenges. In a remote rendering system, re-
projection plays a critical role in stabilizing the content by
adjusting pre-rendered content to match the actual viewport
of the headset. However, the absence of RGB and depth data
for occluded content leads to missing pixels after reprojec-
tion, and existing methods that deliver additional data for
occluded content are not practical for NeRF-based volumet-
ric video streaming (§2.2). For example, while transmitting
all ray-marching sampled points for reprojection ensures
high visual quality, it leads to significant bandwidth usage
and computational demand. Thus, to reduce the overheads,
the challenge lies in accurately and efficiently identifying po-
tential locations of missing pixels on the fly from implicitly
encoded NeRF content without knowing the headset’s actual
viewport on the edge server.

Solution. Our key observation is that missing pixels usually
emerge near the contours of foreground objects in the rendered
content, particularly where the previously occluded back-
ground becomes visible under the current viewport. These
missing pixels result from the parallax effect [9], which is
influenced by viewport prediction errors and the relative
depth between foreground and background content. This
can be described mathematically as M = d x (1 — Dr/Dp),
where M represents the width of missing content starting
from each pixel located on the contours of foreground ob-
jects, d corresponds to viewport prediction error, and Dr and
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Figure 9: The distribution of points’ opacity determines
whether a ray intersects an object’s contour.

Dg are the distances of the foreground and background con-
tent to the viewpoint, respectively. To address the missing
pixels, we propose to transmit intermediate sampled points
on rays that intersect areas around these contours to fill miss-
ing pixels. Specifically, our solution involves (a) identifying
the contours from the content rendered on the edge and (b)
delivering additional points around them.

Contour Identification. While existing edge detection [5]
can be used for contour identification, it may include con-
tours not in areas that occlude background content, wasting
network bandwidth. Removing these irrelevant contours can
introduce substantial processing latency (e.g., >10 ms on the
8i dataset [1]). Thus, accurately and efficiently identifying
the contours in neural content necessitates a nuanced exam-
ination of ray-marching sampled points. Our key insight is
that a marched ray with multiple clusters of high-opacity sam-
pled points is likely to intersect the contours of foreground
content, as illustrated in Figure 9. When Ray1 crosses the
contour, points with high opacity values can be observed in
both foreground and background content due to blending at
this transition zone. However, when Ray2 traverses the non-
contour area, only high-opacity points near the foreground
content are usually clustered. This observation allows us
to leverage the opacity and depth of sampled points to effi-
ciently identify the required points for reprojection.

To identify contours, we compute the weighted standard
deviation of the depth of sampled points along each ray with
their opacity as the weight. The depth values are used as an
indication of whether high-opacity points along each ray
are clustered. A high deviation suggests a ray intersects the
contour of foreground content, on which high-opacity points
are distributed across varying depths. It is essential to estab-
lish an appropriate threshold for this deviation to balance
visual quality and bandwidth consumption. A higher thresh-
old selects fewer contour areas, which may lower bandwidth
usage but risks missing important contours. On the other
hand, a lower threshold potentially improves reprojection
quality by including more contour areas, while increasing
bandwidth consumption.
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To balance the above trade-off, we adaptively adjust the
threshold for each video, adding it as a hyperparameter to the
trained NeRF content. Let Ac(T) represent the area of pixels
covered by the selected sampled points after reprojection,
which is affected by the threshold T, and let Ay; denote the
area of known missing pixels. We further define A;(T) =
Ac(T) n Ay, which is the overlapped area, and Ay(T) =
Ac(T) u Ay, which is the total area covered by Ac(T) and

Ap. The loss function is defined as Loss = 1 — 2[11((?), which
penalizes both false negatives (the sampled points could not
fill all the missing pixels) and false positives (sampled points
are reprojected to non-missing pixels). This optimizes the
threshold T to make the selected sampled points effectively

fill only missing pixels.

Adaptive Point Delivering. Given that missing pixels usu-
ally emerge around the detected contours, NeVo adaptively
selects and delivers ray-marching sampled points for repro-
jection. We dynamically expand each pixel in the identified
contour to a circular area with a radius of M and transmit
only ray-marching sampled points on rays within this area
to the client. M is calculated based on the parallax effect [9],
leveraging the relative distances of the foreground and back-
ground content to the viewpoint: M = d x (1 — Dg/Dg), and
we set d as 20 cm, which is the upper bound of translational
viewport prediction error in §3.2. This calculation accounts
for the fact that as the viewer moves, the content closer to
the viewpoint appears to move faster than that further away
in the viewport. Thus, the closer content potentially reveals
or obscures substantial portions of the content further away,
leading to more missing pixels, which requires a larger M.

4 Implementation

Reducing Latency with Transmission Ordering. When
streaming neural immersive content, prolonged end-to-end
latency, including the time taken for content transmission
and rendering, negatively impacts QoE by requiring a larger
viewport prediction window, which leads to less accurate
predictions [35, 67, 96]. The iterative nature of ray marching
and reprojection of sampled points (§2.1) implies that along
each marched ray, a received voxel/point with a higher in-
dex (further away from the viewpoint) cannot participate in
rendering until all lower-index voxels/points (closer to the
viewpoint) have arrived. As a result, the rendering of the
scene can be notably delayed. To address this, we implement
a transmission ordering method, where voxels/points are
streamed based on their depth ranges to the viewpoint, in
ascending order from nearest to farthest.

System Implementation. We implement the content server
and the edge of NeVo in Python on Ubuntu 20.04, and develop
a prototype of NeVo client on Microsoft HoloLens 2 [2] using
Unreal Engine v4.27 [7]. On the edge, we modify the code
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from ReRF [84] for rendering. The communication is based
on WebRTC (Web Real-Time Communication) [37] using
the aiortc library [8], and for the edge-to-client streaming,
we leverage existing designs for 2D videos to handle packet
loss [68]. Similar to ViVo [35], we implement distance-aware
optimization that adjusts the content quality based on its
distance to the viewer, and rate adaptation that dynamically
changes content quality based on network capacity.

For the VRM model, which handles content reconstruc-
tion, we simulate packet loss during training by randomly
zero voxels for the augmented data (§3.3). To determine the
optimal history window size, we compare the performance
of VRM with window sizes of 9, 12, and 15 frames. Since
the visual qualities for these settings are similar, we set the
window size to 9 frames to reduce memory consumption
and computation overhead. We train a VRM model for each
video, given its better performance than training a model
with all videos (§5.4). We utilize an Adam optimizer [40] with
a learning rate of 0.001 and a batch size of 1024, and we train
the model for a maximum of 50 epochs. The model with a
size of ~15 MB is fetched by the edge from the content server
at the startup stage. Our implementation consists of 7,000+
lines of code (LoC): 1,300+ for the content server, 3,000+ for
the edge, 2,200+ for the client, and 500+ for the VRM model.

5 Performance Evaluation

5.1 Experimental Setup

Devices. Our client device is Microsoft HoloLens 2 [2] with
a Qualcomm Snapdragon 850 chip. The edge server has an
AMD Ryzen 9 7900X CPU with 12 cores, 32GB memory, and
an NVIDIA GeForce RTX 4090 GPU. We set up a commodity
machine with an Intel i7-11700 CPU as the content server.

Network Conditions. We connect the client, edge, and
content server with a Linksys MR7500 WiFi router. The con-
tent server and the edge are connected with an Ethernet of
~800 Mbps throughput. The edge and client are wirelessly
connected with ~450 Mbps throughput. We assess NeVo's ef-
fectiveness under fluctuating/limited bandwidth with packet
loss in a controlled setting. We emulate the packet loss with
real-world traces released by Hairpin [55]. For the link be-
tween the content server and the edge, we use tc [6] to replay
three distinct traces with average bandwidths of 76.7+6.3
Mbps, 102.4+13.9 Mbps, and 150.4+35.6 Mbps, similar to
those used by ViVo [35]. We increase the round-trip time
between the content server and the edge to ~40 ms (i.e, a
typical latency within the U.S. [27]). For the link between
the edge and the client, we increase the round-trip time to
~30 ms, emulating a 5G network connection [70]. We replay
three other traces collected from different sites of a major U.S.
cellular network, with average bandwidths of 50.1+5.4 Mbps,
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Figure 10: Throughput of ReRF (R) and NeVo (N) on 22 videos from six datasets.

61.2+6.6 Mbps, and 80.3+7.6 Mbps to represent different 5G
network conditions [70].

Videos. To verify NeVo is generic across different NeRF
content, we select 22 videos from six datasets for perfor-
mance evaluation: soldier, longdress, loot, and red and black
from 8i [1], lubna, rafa, and matis from V-SENSE [59], sport_1,
sport_2, sport_3, and basketball from NHR [90], kpop, box, and
sing from ReRF [84], flame_steak, coffee_martini, sear_steak,
and cook_spinach from NV3D [46], and 0012_11, 0013_01,
0019_08, and 0021_03 from DNA-Rendering [22]. The videos
are generated offline by leveraging ReRF’s libraries [84]. The
NHR [90], ReRF [84], NV3D [46], and DNA-Rendering [22]
datasets provide images taken from different angles for train-
ing NeRF videos. We render the 8i and V-SENSE datasets’
high-quality point clouds to images from different viewports
and use them to train NeRF videos.

Baselines. In this paper, we adopt ReRF [84] as the baseline
system. Compared with other streamable NeRF (e.g., MLP-
maps [63] and Tensor4D [71]), ReRF achieves comparable
visual quality, while handling long-sequence videos. More-
over, ReRF consumes less bandwidth, for example, requiring
<150 Mbps on the basketball video, while MLP-maps and
Tensor4D necessitate >300 Mbps. Since ReRF lacks an end-
to-end system design, we integrate it into our streaming
framework for performance evaluation. We also compare
NeVo with ViVo [35], which streams point-cloud-based volu-
metric videos, and Vues [51], which leverages an edge server
to transcode point clouds into 2D streams. For their com-
parison with NeVo, we use the 8i and V-SENSE point cloud
datasets. We re-implement ViVo and Vues on HoloLens 2,
and our results align well with their reported ones.

Viewing Traces. For 8i [1] and V-SENSE [59] videos, we use
viewing traces released by Theia [91] with 52 participants.
For videos from NHR [90], NV3D [46], DNA-Rendering [22]

and ReRF [84], we use the simulated viewing traces provided
by their authors. For a fair comparison, all systems use the
same viewport prediction method in ViVo [35].

Metrics. We evaluate the network throughput and latency of
NeVo under both unthrottled and fluctuating/limited band-
width and monitor the CPU and GPU utilization on the edge
and the client. For visual quality, we employ SSIM [87] and
LPIPS [101] to compare point cloud and NeRF representa-
tions, as well as the impacts of our proposed components in
NeVo. Moreover, we conduct a large-scale IRB-approved user
study to evaluate the real-world user experience of NeVo.

5.2 Optimizing Bandwidth Consumption

In this section, we assess the proposed optimizations for
reducing bandwidth consumption when streaming from the
content server to the edge (§3.2). The baseline is ReRF [84]
that fetches all feature voxels at the highest quality. We
conduct our experiments on unthrottled networks.

Figure 10 compares the throughput of NeVo and ReRF with
22 videos from the six datasets with diverse bandwidth re-
quirements, plotting the 25th and 75th percentiles, medium,
mean (green dots), and lower and upper whiskers [29]. As
NeVo omits feature voxels with low neural visibility, its av-
erage throughput is 68.3%, 66.1%, 60.8%, 61.8%, 60.7%, and
65.9% lower than ReRF on the six datasets, respectively. Ta-
ble 1 shows the visual quality of NeVo in SSIM [87] and
LPIPS [101] compared with the ground-truth content ren-
dered with all voxels (i.e., the baseline ReRF). We observe
that NeVo can achieve >0.98 SSIM (visually lossless [26])
and its LPIPS is close to 0 (high similarity with ground
truth [101]), validating that our trained threshold for deliv-
ering only voxels with high neural visibility can effectively
optimize bandwidth usage while maintaining good visual
quality. Compared with ReRF, NeVo adds only <1 ms latency
for determining the neural visibility of voxels.
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5.3 Recovering from Content Loss

We next evaluate the performance of the loss recovery model
VRM for streaming from the content server to the edge (§3.3),
under limited/fluctuating bandwidth. The baseline reuses
feature voxels from the previous frame when packet loss
results in missing voxels. Additionally, we compare NeVo
with a retransmission-based method (RTNS) to recover lost
voxels, while still reusing feature voxels if packets miss the
rendering deadline. For comparing the reconstruction quality,
we replay the viewing traces and render content based on
the feature voxels from VRM, RTNS, and the baseline. The
ground truth is rendered for scenarios without packet loss.
The loss recovery model of NeVo incurs limited latency (<5
ms under all packet loss rates), ensuring that the content can
be reconstructed on time.

Figure 11 compares the SSIM and LPIPS of content ren-
dered by NeVo, RTNS, and the baseline under networks with
low (<25%), medium (25% to 50%), and high (>50%) packet
loss rates [23, 45]. NeVo outperforms other methods in all
conditions, with >0.9 SSIM on average, indicating good visual
quality [26]. When the packet loss rate is <25%, the average
SSIM of NeVo is ~0.98, indicating lossless visual quality [26],
and outperforms RTNS and the baseline by 0.011 and 0.035,
respectively. When the network experiences medium loss
rates, NeVo achieves an average SSIM of 0.962, outperform-
ing RTNS and the baseline by 0.021 and 0.044, respectively.
The advantages of NeVo are more pronounced under high
packet loss rates (>50%), with an SSIM of 0.902, exceeding
RTNS and the baseline by 0.061 and 0.143 on average, respec-
tively. Moreover, when the packet loss rate is high, ~55% and

and RTNS under an 80% loss rate.

video trained models.

~77% of frames in RTNS and the baseline, respectively, have
poor visual quality (SSIM <0.86) [26], whereas, for NeVo,
only ~24% of frames exhibit subpar visual fidelity. Regard-
ing LPIPS (where lower is better), NeVo achieves the lowest
score, on average, across all packet loss conditions, indicating
better reconstruction quality than RTNS and the baseline.

Figure 12 compares the SSIM of NeVo with RTNS and the
baseline on individual frames under varying packet loss rates
across different videos. The quality drops of NeVo are notably
lower than RTNS and the baseline. On average, NeVo’s SSIM
drops below 0.90 when the loss rate reaches 80%. This ensures
good reconstruction quality as the packet loss usually spans
from 0% to 80% [23]. Figure 13 visualizes a sample frame from
NeVo and RTNS under an 80% packet loss rate, showing that
NeVo reconstructs frames with high quality.

In Figure 14, we compare the performance of models
trained per video and across all videos. The per-video model
achieves better visual quality in all packet loss rates, demon-
strating that adapting VRM to the unique content of each
video leads to more accurate reconstruction. This enhance-
ment is due to VRM ’s ability to optimize specifically for the
distinct characteristics of individual videos. Since VRM is
lightweight, its offline training time is <1 minute per frame,
much shorter than the >30 minutes per frame offline training
time of NeRF-based videos.

5.4 Alleviating Reprojection Artifacts

In this section, we evaluate the performance of content re-
projection in NeVo for edge-to-client streaming (§3.4). We
assume no data loss during transmission between the con-
tent server and the edge to eliminate VRM’s impact on visual
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Figure 15: Incorporating NeRF’s ray-marching sampled points
(left) improves the visual quality compared to the baseline that
relies on RGB and depth data (right).

quality. The baseline is ReRF solely relying on RGB and depth
data for reprojection. We replay the viewport traces for the
8i [1] and V-SENSE [59] datasets, captured when users view
volumetric content on mobile headsets [91]. We set the view-
port prediction window (for edge-to-client streaming) as 132
ms, which is the upper bound for the edge-to-client latency
under 5G networks [70]. Specifically, we select the frames
with a viewport prediction error >4 cm, which covers >50%
of the viewing traces, to demonstrate the effectiveness of
NeVo’s reprojection design.

Figure 15 shows a qualitative comparison between the pro-
posed reprojection approach in NeVo and ReRF. NeVo can
reproject the content with high fidelity by judiciously lever-
aging ray-marching sampled points around the contours to
fill the missing pixels, which are observed in ReRF. Figure 16
shows a quantitative comparison of NeVo and ReRF by cal-
culating the SSIM with the ground truth rendered with the
client’s actual viewport. NeVo achieves good visual quality
with an average SSIM of 0.923 [26]. On the other hand, ReRF
simply leverages RGB and depth data for reprojection and
results in a lower average SSIM of 0.899. Compared with the
straightforward solution introduced in §3.4, which streams
all ray-marching sampled points for reprojection (>2 Gbps),
NeVo keeps bandwidth consumption at an acceptable level
(§5.6) by selectively transmitting sampled points.

We also evaluate the trade-off between visual quality and
bandwidth consumption when edge-to-client latency increases.
In this case, the viewport prediction window must be in-
creased to anticipate a more distant future viewport. How-
ever, increasing the window size amplifies prediction er-
rors [35]. Based on the function M = d x (1 — Dr/Dg) used
in §3.4, we need to expand the areas around the contours of
foreground objects to reduce missing pixels after reprojec-
tion, while this leads to increased bandwidth consumption.
For example, when the prediction window size is 132 ms, the
average edge-to-client bandwidth consumption is 14.4+3.7
Mbps, and it can be more than 30 Mbps when the window
size increases to 300 ms. On the other hand, if the expan-
sion areas are not adjusted, the SSIM may drop below 0.85,
leading to a noticeable degradation in visual quality.
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5.5 End-to-end Latency

Next, we evaluate the end-to-end latency by breaking it down
into two components:

o Content server to the edge (S2E): The time from when the
content server begins transmitting NeRF content until the
edge finishes rendering the content.

e Edge to the client (E2C): The time from when the edge
starts streaming rendered content until the client puts the
content into the rendering buffer.

Figure 17 compares NeVo with ReRF under fluctuating and
limited bandwidth. The latency under unthrottled networks
shows similar patterns and is thus omitted. NeVo achieves a
25.8% reduction for S2E (~64 ms vs. ~86 ms) and a 10.4% re-
duction for E2C (~53 ms vs. ~59 ms). The end-to-end latency
of NeVo is ~120 ms, 21.1% lower than ReRF (~152 ms). Since
NeVo reprojects content on the fly, the motion-to-photon
latency (i.e., the duration between a change in the viewport
and the update of the rendered frame) is kept under 33 ms.

Compared with ReRF, NeVo improves QoE by introducing
content reconstruction and delivering selected ray-marching
sampled points for reprojection. The incorporated operations
are lightweight, with <5 ms for content reconstruction, <3
ms for contour identification, and <5 ms for reprojecting
the points. Although NeVo requires more operations, trans-
mission ordering (§4) can reduce the latency by allowing
simultaneous computation and content delivery.

5.6 Evaluation of Full-fledged NeVo

We compare the full-fledged NeVo with ReRF [84], ViVo [35],
and Vues [51] using the 8i [1] and V-SENSE [59] datasets.
We configure Vues [51] and ViVo [35] to run at 30 FPS, fol-
lowing their original design. After extensive engineering
optimizations, ReRF [84] achieves around 20 FPS streaming.
With fewer voxels to process, NeVo is capable of achieving 30
FPS streaming. The highest point density for ViVo is limited
by the decoding capability of HoloLens 2 at 30 FPS, about
200K points per frame [91]. Vues leverages an edge server
for rendering point clouds and thus can stream high-quality
videos. In line with the evaluation presented in Vues, we set
its point density to 456K. When comparing the visual qual-
ity, we show the SSIM of the content generated using these
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systems with the ground truth rendered from the highest-
quality point cloud provided by 8i and V-SENSE datasets
(e.g., ~1M points per frame for the soldier video).

Visual Quality. Figure 18 compares the SSIM of the content
rendered by NeVo, ReRF, ViVo, and Vues under the network
with fluctuating/limited bandwidth. The average SSIM of
NeVo is 0.946, indicating good visual quality [26], and out-
performs ReRF, Vues, and ViVo by 0.053, 0.039, and 0.253,
respectively. Additionally, the 5th percentile SSIM for NeVo
stands at 0.9 (good quality), whereas those for other sys-
tems are <0.86 (poor quality [26]). The superior visual qual-
ity of NeVo can be attributed to NeRF’s ability to render
high-fidelity content (compared with ViVo and Vues) and
NeVo’s content recovery under packet loss and reprojection
(compared with ReRF), which drastically reduces rendering
artifacts. In contrast, ReRF suffers from artifacts caused by
packet loss and missing pixels during reprojection, Vues
experiences content drift due to inaccurate viewport pre-
dictions, and ViVo is limited to streaming ~200K points per
frame and reduces point density when the bandwidth drops.
Bandwidth Consumption. We first evaluate the stream-
ing of volumetric content between the content server and
the edge/client, such as delivering NeRF content in ReRF
and NeVo, and point clouds in ViVo and Vues. As shown in
Figure 19, NeVo consumes 49+17 Mbps bandwidth, which
is 72.2% lower than ReRF (176+28 Mbps) and 51.6% lower
than ViVo (95+15 Mbps). Vues does not optimize the content
server to edge streaming, consuming >400 Mbps bandwidth,
which is >8x higher than NeVo.

Next, we compare NeVo with Vues and ReRF for the stream-
ing of remotely rendered content. We omit the comparison
with ViVo, as it does not require an edge server to support ren-
dering. As shown in Figure 20, the bandwidth consumption
of NeVo (18.7+3.9 Mbps) is 29.9% higher than ReRF (14.4+3.7
Mbps) and 42.7% higher than Vues (13.1+3.6 Mbps). However,
as shown in Figure 18, NeVo demonstrates superior visual
quality with acceptable bandwidth consumption (lower than
25 Mbps for the standard broadband service required by the
U.S. Federal Communications Commission (FCC) [21]).

User Experience. We evaluate the real-world user experi-
ence of NeVo, ViVo, ReRF, and Vues under fluctuating/limited

with NeVo, ReRF, and Vues.

Vues, and ViVo.

bandwidth, by conducting an IRB-approved user study with
122 participants (female: 64, male: 58, average age: 31.6+10.1)
recruited through the Prolific platform [64]. We ask each par-
ticipant to watch eight playback groups (four groups each
for soldier and lubna videos). The group is defined as (V, B,
U). V contains the soldier and lubna videos; B contains the
network bandwidth traces randomly selected from those
introduced in §5.1; and U contains the viewport traces ran-
domly selected from the 52 users’ trajectories collected for
the 8i dataset. For each group, we show the users four play-
backs, with the same settings of V, B, and U. The difference
is which system (NeVo, ReRF, Vues, or ViVo) generates the
video. We randomly present the four video playbacks in each
group. Thus, the participants do not know which system is
used to create the video. For each playback, the participants
provide ratings on a scale from 1 to 5 (1=bad, 2=poor, 3=fair,
4=good, 5=excellent). Each participant watches eight groups
of recorded videos, leading to a total collection of 896 groups
of ratings.

Figure 21 plots the scores of NeVo and the other three
systems. On average, the rating for NeVo (4.0+0.7) is 53.8%,
73.9%, and 90.4% higher than ReRF (2.6+1.0), Vues (2.3+0.8),
and ViVo (2.1+0.9), respectively. These results validate the
high QoE of NeVo. Based on users’ feedback comments for
each video playback, we confirm that compared with ReRF,
NeVo effectively conceals the missing pixels, thus enhancing
the viewing experience. Moreover, Vues has content drifts,
and ViVo has substantial holes in displayed content, both of
which result in lower ratings.

5.7 Energy and Computation Utilization

Finally, we evaluate the resource utilization of NeVo on our
edge server (i.e, a commercially available machine intro-
duced in §5.1) and the headset (i.e., Microsoft HoloLens 2)
by playing 8i videos with the full NeVo system under an
unthrottled network. NeVo utilizes 20 GB of GPU memory,
~100% of CPU cycles, and ~5.3 GB of main memory on the
edge server. Note that the edge is equipped with a 12-core
CPU, allowing for a maximum CPU utilization of 1,200%. To
measure the on-device resource utilization, we fully charge
a HoloLens 2. After repeatedly playing the video for 30 min-
utes, the battery level drops to 82%. The average CPU/GPU
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utilization is ~60%/~80%, and the highest memory consump-
tion is ~900 MB. The temperature of HoloLens 2 remains
cool after the video playing. Overall, we believe the resource
and energy consumption of NeVo are acceptable.

6 Discussion

Multi-user Scenarios. Simultaneously delivering volumet-
ric content to multiple users with a single edge server is
challenging [100]. As users may have different views, a triv-
ial solution that renders NeRF content for each viewport may
lead to scalability issues in terms of bandwidth consumption
and compute resource utilization. A potential solution is to
transmit the same content to multiple users and subsequently
utilize reprojection (§3.4) to adjust it for each viewport. Nev-
ertheless, employing this strategy in multi-user scenarios
may be suboptimal due to the potential large translational
differences between different users’ viewports.

Live Streaming of NeRF content presents unique challenges,
primarily due to the necessity for online training of NeRF
models, coupled with substantial bandwidth requirements [19].
The high-level idea of NeVo can be extended to live stream-
ing, for example, to reduce bandwidth consumption with
visibility-aware optimizations (§3.2). Additionally, to expe-
dite learning and rendering processes, an effective strategy
could involve pre-training the model for the initial scene,
followed by fine-tuning with only the altered content [19].

Streaming 3DGS-based content. Future systems can lever-
age 3DGS as the volumetric content representation, which
may reduce the reliance on an edge server due to its lower
computational demands. However, 3DGS typically incurs
higher bandwidth requirements compared with NeRF, pre-
senting a significant challenge in bandwidth-constrained en-
vironments. One promising solution is foveated streaming,
which delivers higher quality content for only the viewer’s
foveal area. However, different from the foveated streaming
of point clouds [91], 3DGS consists of discrete points with
varying influence areas, making the generation of foveated
content more complex. For example, reducing the quality
of 3DGS content in the peripheral area (e.g., decreasing the
number of Gaussian points [72]) may affect the perceived
quality within the foveation region when the influence area
overlaps with this region. Thus, foveated streaming of 3DGS-
based videos necessitates novel algorithms.

7 Related Work

Volumetric Video Streaming. Existing studies [35, 41, 43,
51, 52, 99, 100] primarily focused on addressing the high
computational and bandwidth requirements inherent to vol-
umetric video streaming. To achieve this goal, early work
utilized visibility-aware optimizations (e.g., ViVo [35]) and
sped up point-cloud decompression via GPU acceleration
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(e.g., GROOT [43]). More recent work leveraged mmWave for
multi-user volumetric content delivery (e.g., M5 [100]) and
improved the practicality of live volumetric video stream-
ing (e.g., MetaStream [32] and MagicStream [20]). Different
from these efforts on point-cloud-based systems, we focus on
neural content representations such as NeRF for volumetric
video streaming, which provides better visual quality.

Reliable Video Streaming. Current research [23, 45, 55] on
reliable content delivery focused on addressing the impact of
packet loss on 2D video streaming. For example, Hairpin [55]
jointly optimizes retransmission and FEC’s redundancy level
to balance bandwidth consumption and latency. Grace [23]
jointly trains the neural encoder and decoder under simu-
lated packet losses, enabling robust content decoding de-
spite poor network conditions. Reparo [45] leverages deep-
learning models to reconstruct lost content at the receiver
side. In this paper, we reconstruct neural content, which is
more challenging and computation-intensive than 2D video.

Neural Radiance Fields. Existing research on NeRF mainly
explores efficiency optimizations through techniques such
as sparse geometric representations [18, 31, 97], voxel com-
pression [57], voxel decomposition [12], and multi-modal
compression [15]. Beyond that, recent research centers on
the extension of NeRF to represent dynamic scenes [30, 60,
61,71, 73, 85]. Additional efforts enhance the generalizability
of NeRF [13, 38, 81, 86, 98] by reducing its dependence on per-
scene training and densely captured images. In this paper,
we design methods for streaming NeRF-based volumetric
content from networking and systems perspectives.

8 Conclusion

In this paper, we presented the design, implementation, and
evaluation of NeVo, a next-generation volumetric video stream-
ing system with neural content representations. NeVo stands
out in its ability to efficiently reduce bandwidth usage of
NeRF content without a noticeable impact on visual quality.
For networks experiencing packet loss, it maintains a high
QoE via a learning-based content recovery model. More-
over, NeVo effectively mitigates rendering artifacts in con-
tent reprojection, improving visual fidelity. Our extensive
performance evaluations indicate that NeVo significantly out-
performs the state-of-the-art. We hope our initial attempts
in NeVo can stimulate novel applications that benefit from
photo-realistic neural immersive content.
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