Hello, GenAl? Dissecting Human to Generative Al Calling

Ruizhi Cheng
Meta Platforms Inc. and
George Mason University

Surendra Pathak
George Mason University
Fairfax, VA, USA

Guowu Xie
Meta Platforms Inc.
Menlo Park, CA, USA

Menlo Park, CA, USA spathak8@gmu.edu woo@meta.com
ruizhicheng@meta.com
Matteo Varvello Songqing Chen Bo Han
Nokia Bell Labs George Mason University George Mason University

Murray Hill, NJ, USA

Fairfax, VA, USA

Fairfax, VA, USA

matteo.varvello@nokia.com sqchen@gmu.edu bohan@gmu.edu
Client Servers
Abstract Text-only LLM
The rise of generative artificial intelligence (GenAl), powered by ‘f\l !‘fl . b A, (v)

large language models, has led to the emergence of real-time, voice-
based conversational applications that enable dynamic, multi-modal
interactions for everyday tasks such as checking the weather or
planning a trip. These human-to-GenAlI calling applications blend
speech processing, generative intelligence, and real-time commu-
nication, presenting new challenges in latency optimization, net-
work infrastructure design, and resilience under load. Despite their
growing popularity, little is known about the operational character-
istics and performance of these applications. This paper conducts
an empirical measurement of six human-to-GenAI calling appli-
cations from Google, Meta, Microsoft, and OpenAl, focusing on
their input/output modalities, network behavior, latency metrics,
and robustness. Our findings reveal key design choices and per-
formance bottlenecks in these emerging applications. For example,
the conversational latency often reaches several seconds, far ex-
ceeding the typical sub-second delays of human-to-human voice
communication and potentially impairing interactivity. Moreover,
voice-based GenAl traffic is inherently asymmetric: the uplink,
carrying real-time human speech, benefits from streaming-based
transmission, while the typically large downlink GenAl responses
are better served through batch-based delivery.

CCS Concepts

+ Networks — Network measurement; « Computing method-
ologies — Artificial intelligence.

Keywords

Network Measurement, Generative Al (GenAl), GenAlI Calling, Real-
time Human—-GenAlI Interaction

ACM Reference Format:

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songqing
Chen, and Bo Han. 2025. Hello, GenAI? Dissecting Human to Generative
Al Calling . In Proceedings of the 2025 ACM Internet Measurement Conference

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

IMC ’25, Madison, WI, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1860-1/2025/10

https://doi.org/10.1145/3730567.3764441

4 > UM
Multi-modal LLM
[Audio | < 1

Figure 1: Workflow of human-to-GenAlI calling (examined in
§4.1). Servers rely on either text-only or multi-modal LLMs to
process audio streams. ASR: Automatic speech recognition;
LLM: Large language model; and TTS: Text to speech.

(IMC °25), October 28-31, 2025, Madison, WI, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3730567.3764441

1 Introduction

Generative artificial intelligence (GenAlI), exemplified by appli-
cations such as ChatGPT from OpenAl [81] and Gemini from
Google [40], has rapidly evolved into a transformative tool for
both personal and professional use. GenAl applications, powered
by large language models (LLMs) [111], are capable of understand-
ing, reasoning, and generating coherent dialogue with contextual
awareness and task-oriented intelligence. These advancements have
catalyzed a new wave of applications where GenAl agents engage
in dynamic, interactive conversations with human users, facilitat-
ing tasks ranging from personal assistants [31, 52, 112] to code
generation and debugging [56, 64, 85, 98].

Most recently, the fusion of conversational GenAlI with real-time
communication (RTC) has enabled emerging applications that blend
audio interaction with generative intelligence. Notable examples in-
clude the calling features in applications such as ChatGPT and Gem-
ini, marking a pivotal shift toward multi-modal, latency-sensitive
conversational experiences. Different from traditional text-based
services, human-to-GenAI calling (GenAlI calling, for short) typi-
cally relies on complex multi-modal generative models [21] that
involve capturing user inputs (e.g., audio, text, or visual), invok-
ing LLMs deployed on remote servers, and delivering dynamically
generated responses in real time.

Despite the growing popularity, the performance characteris-
tics of GenAl calling applications remain largely opaque, revealing
critical gaps in our understanding of their real-time behavior and
network demands, thus motivating the need for systematic mea-
surement studies. For instance, characterizing the input modalities

https://orcid.org/0000-0002-3942-5167
https://orcid.org/0000-0001-9087-2483
https://orcid.org/0009-0003-8756-8327
https://orcid.org/0000-0001-8500-4630
https://orcid.org/0000-0003-4650-7125
https://orcid.org/0000-0001-7042-3322
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3730567.3764441
https://doi.org/10.1145/3730567.3764441

IMC ’25, October 28-31, 2025, Madison, W1, USA

and the corresponding outputs is essential for capturing their end-
to-end operational dynamics. Moreover, key latency metrics such
as call setup time, which indicates the cold start delay, and time to
first token (TTFT), which reflects user-perceived latency (§3), sig-
nificantly influence user experience in interactive scenarios. In this
paper, we aim to shed light on these dimensions through empirical
measurement and detailed workflow analysis.

We measure six representative applications: ChatGPT [83] from
OpenAl, Copilot [78] from Microsoft, Gemini [37] from Google, and
Instagram [70], Messenger [72], and WhatsApp [73] from Meta. We
exclude voice-assistant applications such as Apple Siri [11] as their
current implementations do not incorporate GenAl capabilities [28].
We compare GenAl calling with voice-assistant applications in
§4.6. We further exclude the mobile application of Claude [9] from
Anthropic since, despite offering voice-based input, it currently
does not support calling functionality for sustained, open-ended
dialogue. Finally, we focus exclusively on mobile deployments and
do not consider the Web-based versions of selected applications,
as their capabilities may differ significantly due to variations in
browser environments and access to device-level resources [22, 96].
We leave the measurement of additional applications, including
Web-based counterparts, as promising directions for future work.

While GenAl calling is a nascent paradigm, it inherits and ex-
tends architectural principles from established real-time commu-
nication and content delivery systems. For instance, human-to-
human calling applications such as Skype [79] have long addressed
challenges of real-time audio streaming. Those challenges remain
relevant in GenAl calling but are compounded by the need to in-
corporate compute-intensive LLM inference into the communication
loop. Similarly, content distribution networks (CDNs) have laid the
groundwork for scalable delivery of static and streaming content;
however, GenAl calling demands dynamic, per-session content gen-
eration that introduces new latency constraints. Our study reveals
both convergences and divergences from prior systems, offering
novel insights into how emerging GenAI workloads are reshaping
traditional expectations of latency, network usage, and architectural
design for interactions between human users and Al agents.

We summarize our key findings as follows.

Finding-1. All six applications exhibit >1s TTFT, with the highest
surpassing 8s (§4.4), well above the sub-second thresholds typically
required for smooth, natural voice interaction [46]. Our measure-
ments show that TTFT is jointly influenced by several factors,
including the input modalities supported by the LLM backend, the
geographic location of server infrastructure, the application’s cho-
sen transmission paradigms, and application-level optimizations
such as incremental inference when handling long queries.

Finding-2. Gemini and the premium version of ChatGPT utilize
multi-modal LLMs [21] that directly process audio input, whereas
other applications rely on traditional text-only LLMs that require
converting user speech to text before inference, and then convert-
ing the generated text back to speech for the response (§4.1). While
multi-modal LLMs enable more seamless and expressive interac-
tions by interpreting raw audio data, including non-verbal cues,
they introduce additional processing overhead, adding >1s to the
TTFT, compared to text-only LLMs.

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

Finding-3. In terms of network infrastructure (§4.2), the studied
applications vary in the number of network sessions established dur-
ing call setup. Gemini utilizes a single session and thus achieves the
lowest setup time (~1s), whereas ChatGPT shows non-deterministic
behavior, opening 4-9 sessions to the same server, leading to setup
times exceeding 3s. We also find that all applications deploy their
servers primarily in major metropolitan areas, leading to a higher
round-trip time (RTT) for users in less populated regions and po-
tentially adding extra delay to the TTFT.

Finding-4. These applications adopt different design strategies
for media delivery, resulting in varying protocol choices (§4.3).
ChatGPT, Instagram, Messenger, and WhatsApp utilize UDP/RTP (Real-
time Transport Protocol) for streaming-based transmission, de-
livering audio frame by frame in both uplink and downlink. In
contrast, Copilot employs TCP with HTTP/2 (H2) to implement a
batch-based strategy in uplink and downlink, where multiple audio
frames are aggregated and transmitted in bursts. Gemini appears
to be A/B testing with its uplink transmission strategy, alternating
between streaming-based (QUIC with HTTP/3) and batch-based
(TCP/H2) deliveries. In contrast, its downlink consistently relies on
a batch-based transmission approach.

Finding-5. These transmission paradigms have a notable impact
on both TTFT and bandwidth usage. For instance, streaming-based
transmission enables shorter inter-arrival times than batch-based
approaches, reducing TTFT by 150-250 ms. In contrast, batch-based
transmission allows applications to retrieve the complete GenAl
response quickly in the downlink, but at the cost of a substantial
bandwidth surge, reaching up to 4 Mbps in the case of Copilot. On
the other hand, streaming-based applications such as Instagram,
Messenger, and WhatsApp maintain a low bandwidth footprint, typi-
cally operating at just 30-60 Kbps.

Finding-6. Through carefully crafted queries, we observe that
Instagram, Messenger, and WhatsApp may employ incremental infer-
ence, progressively processing user audio as it is received (§4.4).
For example, they may process speech in smaller steps as the user
speaks, rather than waiting for the utterance to be completed before
initiating inference. Our measurement results show that this opti-
mization enables their TTFT for long queries to remain comparable
to that for short queries. In contrast, other applications lack such
optimizations, resulting in TTFT increases of more than 25%.

Finding-7. Our network disruption experiments (§4.5) reveal that
WhatsApp supports fast failover with an average switching time of
1.2s, achieved by pre-establishing connections to three servers dur-
ing call setup (§4.2). In contrast, ChatGPT, Copilot, and Gemini lack
any failover mechanisms and lose functionality when the connec-
tion to the server becomes unavailable. Moreover, none of the evalu-
ated applications implement adaptive bitrate streaming [42, 54, 93]
to handle constrained bandwidth conditions. This limitation is par-
ticularly evident in Copilot, which fails to deliver smooth responses
when downlink bandwidth falls below 1.5 Mbps. In comparison,
other applications function reliably with bandwidth requirements
of only a few hundred Kbps.

Our findings suggest that GenAl calling may necessitate a fun-
damentally new networking paradigm, one that moves beyond

Hello, GenAl? Dissecting Human to Generative Al Calling

the one-size-fits-all strategies of traditional RTC or CDN infras-
tructures. Instead, it may require an intelligent integration of both
approaches. This need arises from the inherently asymmetric na-
ture of voice-based GenAl traffic. The uplink consists of real-time
human speech, which is best served by RTC-style transmission.
In contrast, while the downlink also transmits audio, the genera-
tion process of GenAl response is token-based; a single token can
correspond to a substantial portion, or even the entirety, of the
GenAl response. Consequently, the downlink exhibits a delivery
pattern closer to on-demand streaming, for which CDN-style mech-
anisms provide a feasible complement to RTC-based approaches.
In a recent paper [27], we further discuss design choices for GenAl
calling motivated by the findings of this study. For instance, we
explore QUIC-based transmission to support direction-dependent
delivery, as well as dynamic switching between streaming-based
and batch-based delivery in the downlink, depending on network
conditions and the specific context of human-GenAlI interactions.

2 Background

Human-to-GenAlI Calling Applications consist of a client-side
application (e.g., a mobile app) and a remote LLM backend (e.g., de-
ployed in a cloud data center [92]). Figure 1 illustrates the workflow
of a typical GenAlI calling application, based on our measurement
observations (§4.1). On the client side, the user speaks into a mi-
crophone, and the captured audio is transmitted over the Internet
to the backend server. The server processes the input using either
text-only LLMs or multi-modal LLMs [21]. When relying on a text-
only LLM, the server first executes an automatic speech recognition
(ASR) [119] module to extract scripts from audio. The textual query
is processed by the text-based LLM to generate a response, which is
then passed through a text-to-speech (TTS) [95] module to synthe-
size an audio response. In contrast, multi-modal LLMs can directly
process raw audio and generate an audio response, without inter-
mediate text conversion. Note that the LLM, ASR, and TTS modules
may be deployed on different servers for scalability considerations.

Overview of Studied Applications. In this paper, we investigate
six popular GenAlI calling applications: ChatGPT [83] from Ope-
nAl, Copilot [78] from Microsoft, Gemini [37] from Google, and
Instagram [70], Messenger [72], and WhatsApp [73] from Meta. We
choose these applications because they are developed by leading
companies of LLMs [121]. Among them, ChatGPT and Gemini re-
lease paid tiers that provide access to more advanced models than
their free versions. We refer to them as ChatGPT-P/ChatGPT-F and
Gemini-P/Gemini-F only when their measurement results show dis-
tinguishable patterns. Thus, in total, our study covers eight distinct
instances of these applications. In the following, we summarize the
key features of the selected six applications.

e OpenAlL We evaluate ChatGPT-F and ChatGPT-P using the GPT-
4 [80] and GPT-4o [82] models, respectively, as they are the default
deployments for these tiers and are optimized for fast response [84].
e Microsoft’s Copilot does not have a paid version. We evaluate its
performance using the “Quick response” mode, which is described
in the app as “Best for everyday conversation”. The specific LLM
backend used by Copilot is not disclosed.

® Google. We evaluate Gemini-F and Gemini-P using the 2.0 Flash [36]
and 2.5 Flash [38] models, respectively, as they serve as the standard

IMC ’25, October 28-31, 2025, Madison, W1, USA

Platforms

OO Meta

= ® ©
IS — AR & &l
0] <7 <77 Instagram Messenger WhatsApp
i0S_ Android i OpenAl | Microsoft | Google

ChatGPT Copilot Gemini
Figure 2: Measurement setup.

Client WiFi Access Point

deployments for their respective tiers, tailored specifically to deliver
low-latency responses [90].

o Meta’s three applications Instagram, Messenger, and WhatsApp em-
ploy the same LLaMA [107] model as the LLM backend. All of them
are freely available and have no premium plan. Meta released a
standalone application, Meta Al on April 29, 2025 [71]. Based on
our initial measurements, its network behavior closely resembles
that of Messenger.

Audio Codec. Raw audio is a continuous analog signal that, in a
typical voice call, can consume over 700 Kbps bandwidth [69]. To
reduce this overhead, modern audio codecs segment the continuous
waveform into discrete frames and apply efficient compression be-
fore transmission. For example, Opus [109], a widely adopted codec
and the default one in WebRTC [108], supports frame durations
ranging from 2.5 to 60 ms, with 20 ms being the default. It can
aggregate multiple frames into a single packet. Additionally, Opus
supports discontinuous transmission (DTX), which, when enabled,
reduces bandwidth usage during silence or low-activity periods by
encoding only one frame every 400 ms [109].

3 Testbed & Data Collection

Figure 2 shows our experimental setup. We conduct experiments
on three smartphones: 1) Google Pixel 8a (Android), 2) OnePlus
10 Pro (Android), and 3) iPhone 14 Pro (i0S). We observe that de-
vice type and operating system have negligible impact on most
of the measured metrics, as the majority of processing occurs on
the server side (§4.1). Thus, unless otherwise specified, we report
aggregated results across all three devices. We deploy the clients
in nine locations across the western, middle, and eastern U.S., de-
noted as Western-1/2/3, Middle-1/2/3, and Eastern-1/2/3, respectively,
when presenting location-specific results. For results unaffected
by client geolocation, we report aggregated outcomes across all
nine locations. The client devices connect via WiFi to an access
point (AP) providing an average bandwidth exceeding 200 Mbps
and a round-trip time (RTT) of ~10 ms between client and AP. We
deploy Wireshark [113] on the AP to capture and analyze network
traffic. We disable all background processes on client devices during
testing and clear previous session data, if any.

Each experiment (i.e., one call session) consists of multiple rounds
of human-GenAl interaction, where each user query is randomly
drawn from the dataset introduced below, and the duration of
each call is at least 120s. At each location, for each device, and
for each application, we conduct 20 experiments. We consider
ChatGPT-P/ChatGPT-F, Gemini-P/Gemini-F, and Gemini-T/Gemini-Q (ex-
plained in §4.2), as distinct applications. Thus, we conduct 9 (loca-
tions) X 3 (devices) X 20 (experiments) X 10 (applications) = 5,400
calls. We also conduct additional calling sessions with specially
designed queries to examine TTFT optimizations (§4.4) and with

IMC ’25, October 28-31, 2025, Madison, W1, USA

controlled network disruptions to evaluate application robustness
(§4.5). For these calling sessions, conducted at the Eastern-1location,
we perform 3 (devices) X 20 (experiments) X 10 (applications) = 600
calls. Thus, in total, our measurement study comprises 6,000 calls.

We primarily leverage the Everyday Conversations for LLMs
dataset [33] for input queries. This dataset comprises a diverse
set of multi-turn conversations on everyday topics and elementary
science questions. They reflect two representative use cases of GenAl
calling applications: casual dialogue and knowledge retrieval. We
adopt this dataset for the majority of our experiments, except for
workflow analysis (§4.1) and the investigation of TTFT optimiza-
tions (§4.4), where we use carefully crafted queries to isolate and/or
examine specific behaviors. Each input query is converted into
speech using ElevenLabs [32]. During each experiment (or call), the
pre-recorded audio is replayed in a controlled, quiet environment
as the user’s input, ensuring consistent and reproducible interac-
tion with the applications. At any given moment, either the user
or the GenAl assistant is actively speaking. We also include a mute
setting, where neither party speaks, and the user explicitly mutes
the microphone by clicking the mute button in the app, except for
Gemini, which does not offer this functionality.

We conducted all experiments between February and May 2025
and collected the following performance metrics.
o Throughput. We measure both uplink (from the user to GenAlI)
and downlink throughput during three phases: (i) user speaking, (ii)
GenAl responding, and (iii) mute. Throughput is jointly influenced
by inter-arrival times and packet size, which are introduced next.
o Inter-arrival Time. It refers to the time interval between consec-
utive packets. In streaming-based transmission, audio is typically
encoded and sent frame-by-frame at regular intervals, for exam-
ple, every 20 ms by default in Opus [109] (§2). However, we also
observe batch-based delivery, where multiple audio frames are
bundled and transmitted together as a batch. In such cases, we
define the inter-arrival time as the time interval between successive
batches. Inter-arrival time provides insight into how applications
schedule audio delivery, which can influence how quickly audio
data is received by either the user or the GenAI model.
® Packet Size. It offers valuable insights into how applications de-
liver audio data. Small packets typically indicate streaming-based
delivery, as each audio frame itself is relatively small. Consistently
large packets suggest batch-based transmission, where multiple
audio frames are bundled together.
o Time to First Token (TTFT). Modern LLMs generate responses in a
token-by-token manner [107]. We consider the time at which the
GenAl calling application begins its response as the generation of
the first token. We define TTFT as the time interval from when the
user finishes speaking to when the GenAl starts responding. Note
that most studies on LLM performance define TTFT as the time
interval from when the inference request is received (often already
processed/tokenized) to when the first output token is generated
by the LLM [60, 118]. Thus, they focus on model-side latency and
exclude client-side and networking factors such as audio capture
and data transmission. In contrast, our definition of TTFT measures
the user-perceived, end-to-end latency, representing responsiveness
and conversational flow in real-time human-GenAl interactions.
o Call Setup Time. Upon initiating a call, there is a delay before user
input can be accepted. We define this duration as the call setup time,

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

which reflects the time required to initialize the voice-interaction
pipeline and prepare the backend services. It measures the cold start
time of an application, which is a key factor influencing quality
of experience (QoE) in RTC [47]. Moreover, this delay adds to the
waiting time for the user’s first query, as the system must first
establish the interaction pipeline before processing user input.

4 Measurement Results

4.1 Workflow Analysis

We first examine the workflow of typical GenAl calling applications
by answering two key questions: 1) What is the input modality
of their underlying LLM backends?, and 2) What type of data is
transmitted between the client and server?

Input Modality of LLMs. With the source of user input data being
audio, the underlying LLM backend can process this data through ei-
ther a text-only LLM or a multi-modal LLM (§2). The key distinction
between the two approaches lies in whether the model can capture
and directly interpret information inherent in audio signals, such as
tone or emotion, which would otherwise be lost during conversion
to text. To determine what type of model each application employs,
we design two sets of experiments by generating audio clips with:
1) sounds from various musical instruments (e.g., guitar and drum),
and 2) human voices expressing different emotions (e.g., happiness
and sadness). For example, to test instrument recognition, we use
prompts such as: “Listen to the sound that will be played and identify
whether the musical instrument is a guitar or drum [sounds].”

We observe that only ChatGPT-P and Gemini wait until the audio
has fully played before responding and (correctly) identifying the
instrument. In contrast, other applications respond immediately
after the spoken portion of the prompt (e.g., "guitar or drum"), with
typical responses such as “I am not able to identify ...”, even while
the subsequent instrument sounds are still playing. This indicates
that the backend model relies on ASR to transcribe spoken input,
without the ability to interpret non-verbal audio content. Since
instrument sounds contain no transcribable text, these systems
treat the last transcribed word as the end of the user query.

For emotion recognition, ChatGPT-P and Gemini can accurately
classify the emotional tone (e.g., happy vs. sad) of spoken inputs,
while other applications fail to do so. These results suggest that
ChatGPT-P and Gemini are powered by multi-modal LLMs capable of
audio understanding, whereas the remaining applications rely on
text-only LLMs that cannot directly process/interpret audio signals.

What is Being Delivered? We next investigate the type of data
transmitted between the client and the server. This cannot be ob-
tained directly from the network traffic as all data is encrypted (§4.2).
Since no intermediate conversion to text is required for applica-
tions using multi-modal LLMs, the transmitted data is audio in
both uplink and downlink. In contrast, for applications using text-
only LLMs, the placement of ASR and TTS modules determines
the type of transmitted data: if ASR and TTS are on the server, the
uplink/downlink data will be audio; if these components are on
the client, the transmitted data would, instead, be text. Further, if
ASR and/or TTS are locally executed in the client, we would expect
an increase in CPU utilization during user speech (for ASR) and

Hello, GenAl? Dissecting Human to Generative Al Calling

IMC ’25, October 28-31, 2025, Madison, W1, USA

Application | Protocols # ofConnectllons Ent Svr Owner | Western-1 | Middle-1 | Middle-2 | Middle-3 | Eastern-1
Setup | Calling

Instagram | UDP/RTP 2 1(2) Meta 12.0/2.5 59.0/14 16.5/4.2 31.2/5.2 11.7/2.6
Messenger | UDP/RTP 2 1(2) Meta 11.8/2.7 58.7/14 16.8/4.1 31.7/5.4 11.9/2.8
WhatsApp UDP/RTP 3 1(2) Meta 16.5/4.2 53.0/17 20.7/6.9 28.4/4.4 13.1/3.5
ChatGPT UDP/RTP 4-9 4-6 (4) Oracle 24.7/4.6 69.2/16 13.8/2.3 37.4/5.7 23.4/6.7
Copilot TCP/H2 2 2 Akamai 15.1/5.6 51.8/15 11.1/0.7 33.1/5.3 13.1/4.7
Gemini SI(J:IPC/}{I-IZS 1 1 Google 13.0/4.6 56.0/17 11.5/2.3 26.4/6.1 12.8/4.9

Table 1: Summary of (1) the transport/application layer protocols for media data exchange (H2 and H3 stand for HTTP/2
and HTTP/3, respectively), (2) the number of connections during call setup and active calling (numbers in parentheses for
RTP-based applications denote the number of RTP streams for media data transmission), (3) the entry server owner for each
application, and (4) the round-trip time (RTT) measured between the client and the entry server from five different client
locations across the U.S., shown as average/standard deviation in milliseconds.

GenAl response (for TTS). Thus, resource usage on mobile devices
is a key indicator of where ASR/TTS runs.

Our measurements show that, regardless of the application, the
client-side CPU usage remains stable during interactions between
users and GenAl, indicating that both ASR and TTS are handled
on the server side. To further validate this, we execute Android’s
ASR [7] and TTS [8] APIs on Google Pixel 8a and observe that
ASR/TTS causes a CPU utilization increase of 156/166%, on average.

Summary: With the above analysis, we can reconstruct the work-
flow of mainstream human-to-GenAl calling applications, as shown
in Figure 1. We observe that ChatGPT-P and Gemini have adopted
multi-modal LLMs that can directly process audio input from users.
This design enables more expressive and targeted responses in
specific scenarios, such as identifying sounds or recognizing emo-
tional tone in users’ speech, compared to text-only approaches.
Nonetheless, as we will show in §4.4, this design choice may ex-
tend the TFFT, exhibit a trade-off between interaction richness and
user-experienced latency.

4.2 Network Infrastructure

We next examine the network infrastructure supporting these appli-
cations. Our analysis is structured into three parts: 1) their transport
and application layer protocols, 2) the number of network connec-
tions established during call setup and maintained during active
calling, and 3) the characteristics of the entry server, defined as
the IP address that directly exchanges media data with the client.
This server often functions as a relay node, acting as an entry or
exit point for traffic to or from the provider’s backend infrastruc-
ture. Importantly, the entry server is not necessarily responsible for
tasks such as LLM inference. We believe this definition is broadly
applicable to measurement studies of black-box commercial sys-
tems, where the internal service architecture is typically opaque.
To further validate this, we cross-examine the traces collected from
our prior measurements of social virtual reality platforms [26] and
find that the same entry-server IPs observed for Instagram and
Messenger also appeared in traffic from Meta’s Horizon Worlds.

Network Protocols. Table 1 shows the transport and applica-
tion layer protocols used by these applications. ChatGPT, Instagram,
Messenger, and WhatsApp utilize UDP and RTP, widely adopted for
real-time audio communication [17, 25]. These applications also

incorporate Session Traversal Utilities for NAT (STUN) for net-
work address translation (NAT) traversal and Datagram Transport
Layer Security (DTLS) to secure media exchanges. Copilot uses
TCP with HTTP/2 for media transport and TLS for securing data
exchange. Gemini supports two distinct setups. The first one uses
TCP with HTTP/2 (H2) and TLS for encryption, while the second
one uses QUIC with HTTP/3 (H3) and DTLS. In the following, we
refer to them as Gemini-T and Gemini-Q, respectively, only when
their measurement results show distinguishable patterns. These
configurations appear to be deployed via A/B testing, as we ob-
serve Gemini alternates between them across different days without
requiring client-side updates.

Number of Network Connections. We analyze the number of
network connections each application establishes during call setup
and maintains during active calling. Connections are identified by
the 5-tuple: source IP address, source port, destination IP address,
destination port, and transport protocol [13]. For RTP-based appli-
cations, we further distinguish individual media streams using the
SSRC (synchronization source) field, which uniquely labels RTP
streams when they share the same IP and port pair [99]. Table 1
summarizes connection and RTP stream counts (where applicable).

® WhatsApp initiates three connections via STUN messages with
three servers during call setup. Following connection establish-
ment, the client proceeds to exchange media data with only one
of these servers. Based on the consistent naming convention and
observed behavior, we infer that all candidates serve as potential
entry servers, which enables fast failover when the link to the entry
server in use becomes unavailable (§4.5). During an active call, the
client and the entry server maintain two RTP streams for uplink and
downlink, both using the same IP/port pair. In parallel, the client
periodically exchanges STUN messages with the entry server every
3s over the same connection used for RTP, avoiding the creation of
an extra network session.

o Instagram and Messenger initially exchange STUN messages with
both a dedicated STUN server and a designated entry server. All
media and signaling traffic is routed through the entry server. The
connection behavior with the entry server mirrors that of WhatsApp
(i.e., one connection for two streams), except that STUN messages
are exchanged every 8s, rather than every 3s.

IMC ’25, October 28-31, 2025, Madison, W1, USA

® ChatGPT presents a non-deterministic connection setup pattern.
After a call is initiated, the client exchanges STUN messages over
4-9 client/server port pairs with the same entry server. These ex-
changes occur sequentially over a span of 357 ms on average (SD:
112 ms). During active calling, 4-6 connections remain alive, each
used to exchange periodic STUN messages every 2-3s. One of these
connections also carries media data via RTP, with one uplink and
three downlink streams. Among the downlink streams, only one
carries the actual audio data, as evidenced by its high throughput
during GenAl responses and low throughput when the user speaks.
The remaining two streams exhibit identical packet transmission
patterns and maintain consistently low data usage (~5 Kbps), even
during GenAl responses. These observations suggest that the two
additional downlink streams are likely redundant and may be re-
served for other purposes.

e Copilot maintains two TCP connections. Media data is transmit-
ted over a single connection to its entry server. A second connec-
tion to mobile.events.data.microsoft.com, as indicated in the
Server Name Indication (SNI) from the TLS handshake, is used for
data telemetry [41]. This telemetry connection is only active when
the user speaks.

e Gemini multiplexes all traffic through a single connection to its
entry server, regardless of whether the client uses QUIC or TCP,
and regardless of the free or paid tier.

Entry Server. We next examine the entry servers used by each

application to exchange media data with the client. The owners of
these entry servers are summarized in Table 1. Gemini, Instagram,
Messenger, and WhatsApp rely on servers operated by their respec-
tive companies. ChatGPT utilizes entry servers hosted by Oracle. For

Copilot, the entry server is hosted by Akamai, but the SNI field

reveals the server name as copilot.microsoft.com. This is dif-
ferent from other Microsoft applications, such as AltspaceVR [76]

and Teams [77], which rely on Microsoft’s infrastructure for entry
servers, as shown by prior measurement studies [25, 26]. This de-
cision is likely to provide more entry servers closer to end-users

across geolocations, which we examine next.

Geolocations. We study the geographic distribution of entry servers
by deploying clients across the U.S. (§3). We measure the round-trip

time (RTT) between the client and its assigned entry server using

ICMP pings. With clients in different locations, we also confirm

that none of the evaluated applications use anycast routing [55, 67]

by following the approach adopted in prior work [26]. This allows

us to reliably infer the geolocation of entry servers from their IP

addresses. For geolocation lookup, we use MaxMind [66] and ip-
info.io [43]. Both tools yield consistent results for all servers in

terms of location.

Table 1 presents RTT measurements for one representative lo-
cation on the west and east coasts, respectively, as well as three
locations in the middle U.S. We observe that RTTs from other west
and east coast locations are similar to the locations reported. Across
all applications, we find a consistent deployment strategy, with en-
try servers placed in major metropolitan areas. This results in low
RTTs for clients on the coasts, where more entry servers are avail-
able. In contrast, clients in certain central regions may experience
high RTTs. For example, the Middle-1 location, despite being in
a mid-sized city, is consistently assigned servers over 1,000 miles

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

away, resulting in RTTs exceeding 50 ms, on average, for all ap-
plications. This suggests that commercial GenAl calling services
are still in the early stages of deployment and may not yet be fully
optimized for users in less-populated regions.

We next conduct per-application analysis. While WhatsApp pre-
establishes connections to three candidate entry servers distributed
across various regions (§4.2), its RTTs remain comparable to other
applications. For instance, it achieves 53 ms RTT from Western-1,
which is the second lowest across six applications. This suggests
that WhatsApp benefits from a broader and more distributed server
infrastructure. ChatGPT exhibits higher RTTs when the client is
located on the west coast, east coast, or in Middle-1, compared to
other applications, for example, over 10 ms higher than Instagram
and Messenger. However, in these cases, ChatGPT’s entry server is
located in the same metropolitan areas on the west or east coast
as those of the other two. This observation may suggest room for
improvement in the network performance and server capacity of
Oracle’s infrastructure supporting ChatGPT in these regions. We also
observe that Copilot, hosted on Akamai’s infrastructure, achieves
comparable RTTs to other applications across the U.S.
Summary: Our analysis reveals that the evaluated applications
adopt diverse network infrastructures. For instance, UDP, TCP,
and QUIC, three of the most widely used transport protocols for
RTC [48], are all represented among these applications. As we dis-
cuss next in §4.3, these protocol choices are closely tied to the
underlying transmission paradigms adopted by each application.
We also observe distinct differences in how applications manage
network connections during the call. For example, Gemini stands out
for its lightweight design, maintaining a single connection through-
out the call, which contributes to its short call setup time (§4.4).
Meanwhile, WhatsApp pre-establishes connections to multiple entry
server candidates, enabling fast failover when the connection is
disrupted during calling (§4.5).

4.3 Transmission Behavior

In this section, we analyze the transmission paradigms employed
by the studied applications.

Transmission Patterns during Calling. Figure 3 presents the
uplink and downlink throughput of each application during a call.
ChatGPT, Instagram, Messenger, and WhatsApp exhibit a similar bi-
directional streaming pattern, where bandwidth usage on the up-
link or downlink corresponds closely to when the user is speaking
or GenAl is responding. During idle periods, including when the
user or GenAl is silent or when the session enters the mute stage,
these applications maintain minimal background traffic. An excep-
tion is ChatGPT, which shows slightly elevated uplink throughput
when GenAl is responding. We also observe that WhatsApp demon-
strates two distinct transmission behaviors during the mute stage,
switching modes ~10s after mute is enabled.

In contrast, Copilot and Gemini continuously transmit data in
the uplink regardless of whether the user is speaking or not. For
the downlink, both applications display bursty traffic when GenAl
begins responding, after which the transmission quickly ceases,
even if GenAl continues creating the response. This suggests that
the burst is caused by downloading the entire response up front,
while playback proceeds concurrently. Additionally, both Copilot

Hello, GenAl? Dissecting Human to Generative Al Calling

IMC ’25, October 28-31, 2025, Madison, W1, USA

—_ —— Uplink Downlink —— Uplink Downlink —— Uplink Downlink

8200 1 | | | | | | | |

™ UIAll User | GenAl | Mute User i GenAl i Mute UAIE User i GenAl i Mute

s 1 1 1 1

— 1 1 1 1 1 1 1 1 1

3100 1 | | | (a) i i (b) i i i (c)

< i i | i i i i |

[®)]

50/, 11 | | ! \ INV TV 1

8 oMt i ! : ! ! hanaatianat WY/

c :L..If ! RPN S— ! T I ! ! !

= 0510 20 30 40 50 60 70 0510 20 30 40 50 60 70 0510 20 30 40 50 60 70
Time (s) Time (s) Time (s)

8200 4 4 : | 4000/ | : :

o) 1 1 1 1 [}]] 1

4 %AIEW GenAl E Mute 3000 U EAI User GenAl i Mute Al i User i GenAl

5 i i i i i i

g @ 2000 R i i "

S 50 : ! ! | |

< 20 1 1 1 - ATt St A AAA A 1

A : e : : e

0510 20 30 40 50 60 70 0510 20 30 40 50 60 70 10 20 30 40 50

Time (s) Time (s) Time (s)

Figure 3: The throughput of (a) Instagram, (b) Messenger, (c) WhatsApp, (d) ChatGPT, (e) Copilot, and (f) Gemini-Q (QUIC) during a
calling session. Gemini-T (TCP) exhibits a similar pattern to Gemini-Q. The session consists of five parts: user speaking (0-5s),
GenAl responding (5-10s), user speaking again (10-30s), GenAl responding again (30-50s), and finally, a mute stage (50-70s).
Gemini does not support mute functionality. Note that the scales for (e) and (f) are different from the others.

and Gemini exhibit two distinct throughput modes: a low-throughput
mode for short responses and a high-throughput mode for long re-
sponses. Our experiments finds that the threshold between these
modes is ~5s of response length.

We next perform a detailed analysis of the transmission behav-

iors exhibited by these applications.
Uplink. Figure 4 shows the throughput, inter-arrival time, and
packet size distributions during: (1) user speaking, (2) GenAl re-
sponding, and (3) user mute (§3) for the uplink. The box plot shows
the 95th, 75th, 25th, and 5th percentiles, median, and mean (blue
dots). In the following analysis of the uplink, we use (a)—(i) to denote
the subfigures in Figure 4.

User Speaking (a)-(c): We begin by focusing on the user speaking
phase, where uplink traffic dominates bandwidth usage (Figure 3).
Based on the inter-arrival time (b) and packet size (c) distribution,
we can distinguish two transmission approaches: streaming-based,
where audio is delivered frame-by-frame, and batch-based, where
multiple frames are grouped and sent together. ChatGPT, Gemini-Q,
Instagram, Messenger, and WhatsApp adopt streaming-based trans-
mission, characterized by short inter-arrival times (<60 ms) and
small packet sizes (e.g., over 80% of packets are smaller than 500
bytes). In contrast, Copilot and Gemini-T adopt batch-based deliv-
ery, with evidence of packet sizes clustering near the 1500-byte
MTU (maximum transmission unit) for more than 60% of packets.
This batching behavior also introduces larger inter-arrival times,
for instance, over 40% of packets in Gemini-T exhibiting inter-arrival
times exceeding 300 ms.

Streaming-based applications maintain throughput below 150
Kbps. Our later examination finds that ChatGPT, Instagram, Messenger,
and WhatsApp may utilize the Opus codec [109]. Therefore, their
throughput variations are likely caused by different codec configu-
rations. Considering ChatGPT as the baseline, it adheres to Opus’s
default 20 ms inter-arrival time (§2). Instagram and Messenger re-
duce throughput by increasing the inter-arrival time to ~60 ms.

WhatsApp, on the other hand, largely retains the 20 ms inter-arrival
time but uses smaller packet sizes. They ultimately achieve up-
link throughput in the range of 36-52 Kbps, on average, which is
more than 80 Kbps lower than that of ChatGPT, likely at the cost of
reduced audio quality (given they use the same codec). For batch-
based transmission, Gemini-T achieves even lower throughput than
ChatGPT, primarily due to its larger inter-arrival times, at the cost of
increased TTFT (§4.4). Copilot attempts to maintain moderate inter-
arrival times (100-180 ms), but this, coupled with its large packet
size, leads to a significantly higher uplink throughput, exceeding
600 Kbps on average, over 10X higher than Meta’s applications.

GenAlI Responding (d)—(f): During the GenAlI response phase,
when the user is silent and the uplink traffic is expected to resemble
the mute stage (g), we observe that only Instagram and Messenger
achieve this behavior. Specifically, they shift half of their packets
to a larger inter-arrival time of ~360 ms and reduce their packet
sizes (f) compared to the user speaking phase (c). ChatGPT exhibits a
similar 360 ms inter-arrival time, resulting in its uplink throughput
during GenAl response (d) being roughly half of that during user
speaking (a).

In contrast, Copilot and Gemini-Q/T exhibit similar, or even higher,
uplink throughput during GenAl response than during user speak-
ing. Given the comparable inter-arrival times and packet sizes ob-
served in both phases, this behavior may indicate that the applica-
tions continue capturing and transmitting background audio even
when the user is silent, raising potential privacy concerns. Another
potential explanation is that these applications transmit dummy
packets to maintain session activity rather than actual audio content.
The root cause of this phenomenon warrants further investigation
to determine whether it indeed poses a privacy risk.

Mute (g)—(i): During the mute stage, ChatGPT, Instagram, and
Messenger effectively reduce uplink bandwidth consumption to <10
kbps. This is achieved by shifting half of the packets to a ~400 ms
inter-arrival time (h), likely enabling the DTX mode of the Opus

IMC ’25, October 28-31, 2025, Madison, W1, USA

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

User Speaking

— IG MSG--+ WA— GPT-- CP--- Gem-Q Gem-T — IG MSG--+ WA— GPT-=- CP--- Gem-Q Gem-T
%700 - 1.0 .
2600 é | 0.8 :
¥500 609 | e i
5400 ! 506 i
£300 (a) ,,/ (b) Coa ©
3200 133 118 %6 R i 0.2 '_______-'
=1 36.8 52.0 = Pl
£ 28 28 380 oL & 0.0~50 100150200 300 400 0.0765560 500 1000 1500
IG MSG WA GPT CP Gem-QGem-T Inter-arrival Time (ms) Packet Size (Bytes)

- GenAlResponding

700 — IG MSG--- WA— GPT-- CP--- Gem-Q Gem-T — IG MSG--- WA— GPT-- CP--- Gem-Q Gem-T
w +® 10 e 10 e ,
2600 685 os [i / i
¥500 elE ; f :
5400 508 | [—; —r i
£300 (@ 04 r) (G
5200 141 0.2} H -
100 03 637 ® %% bt I A= R B Il 7 = e B P ;
S ookg7 50 97 ® 0-50 100150200 300 400 06 360560 1000 1500

IG MSG WA GPT CP Gem-QGem-T Inter-arrival Time (ms) Packet Size (Bytes)
""" Mute
— IG~- MSG--- WA-1— WA-2—-- GPT--- CP - WA-1— WA-2-- GPT--- CP

700 1.0 — - m 1.0 :
S600 g [[08 5
£500 5@8 w . J w .
5400 506 | = 3
£300 (@ o4 |: Ooa (0
3200 0.2 0.2
=100 orna 377 O
0062 28 203 W oo 0.0%55 105150200 300 400 O-0T00300500 1000 1500

Inter-arrival Time (ms)

Packet Size (Bytes)

Figure 4: The throughput, inter-arrival time, and packet size of uplink (from left to right) when (1) user speaking (top), (2)
GenAl responding (middle), and (3) mute (bottom). WA-1/2 in the mute stage refers to the first/second stage of WhatsApp.

codec (§2) that they may employ, while also reducing packet sizes to
fewer than 100 bytes (i). Different from other applications, WhatsApp
does not shift to 400-ms inter-arrival times after mute is activated.
About 10s after enabling mute, WhatsApp transitions to a secondary
transmission mode characterized by the continuous transmission
of small 94-byte packets with short inter-arrival times (80% <20
ms), resulting in uplink bandwidth usage exceeding 35 Kbps (g).
The rationale behind this design choice remains unclear. We also
observe that Copilot continues to consume over 500 Kbps of uplink
bandwidth even when muted, suggesting that it lacks optimizations
to reduce bandwidth usage in low-activity periods.
Downlink. Figure 5 shows the downlink throughput and packet
size distributions when GenAl is responding. We do not report inter-
arrival times because for batch-based methods, data is delivered in
a short burst, making the inter-arrival time less informative. We
observe that batch-based approaches consume significantly higher
bandwidth than streaming-based ones, with peak throughput reach-
ing ~4 Mbps in the high-throughput mode of Copilot, as shown in
Figure 5(a). This behavior reflects a download-while-playback strat-
egy. This batch-based delivery is characterized by large packet sizes
(e.g., 1514/1292 bytes for Copilot/Gemini), as shown in Figure 5(b).
By comparing Figures 4(a) and 5(a), we also find that streaming-
based applications have a higher downlink throughput during
GenAl responding than their uplink during user speaking. This
increase is achieved through different strategies. Instagram and

Messenger increase packet sending rates (not shown), while ChatGPT
increases packet sizes. This finding suggests that, even when adopt-
ing the streaming-based paradigm in both uplink and downlink,
these applications apply different rate control strategies, likely re-
flecting different design goals for the delivery of user input versus
GenAl response.

A key factor underlying the different choices for uplink and
downlink deliveries is the inherently asymmetric nature of up-
link and downlink behavior in GenAlI calling applications. The
uplink carries live human speech that must be streamed in real
time, making it well-suited to RTC protocols such as UDP/RTP for
low-latency delivery. In contrast, the downlink transmits GenAl re-
sponses, which are often generated in full before playback and can
be efficiently delivered using batch-based transmission over proto-
cols such as TCP/H2. This asymmetry mirrors the classic RTC and
CDN paradigms, respectively. However, it also presents protocol
design challenges, as both UDP/RTP and TCP/H2 typically enforce
symmetric transmission strategies. Gemini appears to address this
tension by adopting QUIC/H3, which enables streaming-like be-
havior for the uplink while supporting efficient batch delivery in
the downlink.

Summary: We find that the applications studied adopt different
strategies for audio delivery, resulting in distinct data exchange
patterns across different stages of a call. Moreover, even among
applications utilizing similar transmission paradigms, we observe

Hello, GenAl? Dissecting Human to Generative Al Calling

CP-H--- G-Q-H— GTH

IMC ’25, October 28-31, 2025, Madison, W1, USA

G-Q-L GT-L

[e)]

HE

b

34000 2797 — G e WA ——- CP-L
a MSG—— GPT----- -
Q .
¥ 3000 (a) Lo
- I-I_0.8
22000 50.6
) “0.4
51000 6 678 493 :
2 287 [0.2~
£ 5905660 55180 166
200 = H
= e T I T 13 W 20 100300500
WP oV (e QG o

Packet Size (Bytes)

Call Setup Time (s)
w

o~ N

= @ & @

IG MSG WA GPT CP Gem

1000 1500

Figure 5: Throughput (a) and packet size (b) in downlink during GenAl responding. Figure 6: Call setup time of six appli-

L/H: low/high throughput mode.

variations in design details such as inter-arrival times and packet
sizes. This suggests that identifying the optimal transmission con-
figurations for GenAl calling remains an open problem. Moreover,
we reveal potential inefficiencies in the current system designs. For
example, Copilot and Gemini continuously transmit data in the up-
link regardless of whether the user is actively speaking, indicating
further optimization opportunities.

4.4 Latency Analysis

In this section, we analyze and compare the latency performance
of the studied applications. We evaluate the call setup time of these
applications, their TTFT across different queries and client loca-
tions, and potential application-level optimizations to reduce TTFT.
The results reported in this section are based on measurements
conducted at the Eastern-1location, except for the experiments that
explicitly examine TTFT across client locations.

Call Setup Time. We begin by measuring the call setup time (i.e.,
cold start latency) of each application. To enable accurate and large-
scale measurements, we develop an automated testing tool, detailed
in Appendix B. Figure 6 summarizes the results across six appli-
cations. We observe that their call setup time can vary from as
low as 0.25s (5th percentile of Gemini) to as high as 5.34s (95th
percentile of Copilot). Gemini achieves the lowest setup time, aver-
aging ~1s. This efficiency is likely due to its lightweight network
behavior during call initiation, requiring the establishment of only
a single network connection (§4.2). Copilot exhibits the longest call
setup time, >4s on average. Our experiments on network disruption
in §4.5 reveal that this is due to the extended time required to estab-
lish network connections to its server infrastructure. Notably, after
the user initiates a call, Copilot presents a greeting message before
accepting any user input, a behavior not observed in other applica-
tions. This design likely serves to hide the perceived call setup time
by occupying the user’s attention while the system completes its
initialization. ChatGPT has the second-highest call setup time, >3s
on average. This delay may stem from its sequential establishment
of 4-9 network connections to the entry server (§4.2). By contrast,
while WhatsApp also builds connections to its three entry server
candidates, it is done in parallel, avoiding significant setup delays,
which is evidenced by its average call setup time of ~2s, similar to
Instagram and Messenger.

A simple yet effective optimization strategy is to overlap call
setup with user input capture, allowing the user to start speaking
while the session is still being established. While this approach
does not essentially reduce the call setup time, it decreases the

cations.

perceived waiting time by the user. However, none of the evaluated
applications appear to adopt this strategy. Instead, we observe
that during setup, users are typically presented with a transitional
interface, such as a blank screen or a greeting prompt used by
Copilot, during which user input cannot be accepted.

TTFT across Queries. Figure 7 presents the TTFT for six applica-
tions using input queries drawn from everyday topics and elemen-
tary science questions (§3) with experiments conducted in Eastern-1
(§4.2). We find that all applications exhibit similar TTFT across
both query types. More importantly, the measured TTFT remains
considerably high across all applications, with the 5th percentile
exceeding 1s. The worst-case TFFT can reach up to 5s, as observed
at the 95th percentile for ChatGPT-F, falling short of the seamless,
sub-second latency expected in natural voice conversations [46].
Additionally, we observe no evidence of response caching. Even
when users repeat identical queries within the same session, these
applications consistently reprocess the input, resulting in second-
level TTFT for repeated requests.

The input modalities of LLM backends lead to notable impacts
on TFFT. Specifically, applications leveraging multi-modal LLMs
that directly process audio input, including ChatGPT-P and Gemini,
have higher TTFT, averaging over 3s. In contrast, applications re-
lying on text-only LLMs, including Copilot, Instagram, Messenger,
and WhatsApp, achieve lower TTFT below 2s, on average. We ex-
clude ChatGPT-F from this comparison, as our later investigation of
TTFT optimizations reveals that OpenAl appears to assign a weaker
model to it compared to ChatGPT-P, making direct comparisons less
meaningful since model complexity, rather than input modality,
may dominate TTFT in this case.

We further find that the transmission paradigm influences TTFT.
For example, Gemini-Q adopts streaming-based uplink transmission,
resulting in a short inter-arrival time of ~40 ms at the 50th per-
centile; while Gemini-T uses batch-based delivery with a longer
inter-arrival time of ~300 ms at the 50th percentile (Figure 4). This
difference leads to a measurable latency gap, with Gemini-T con-
sistently showing 150-250 ms higher TTFT than Gemini-Q for the
same query and service tier. For example, for the paid tiers, the
average TTFT for Gemini-T on the everyday topic is 3.45s, 250 ms
higher than the 3.20s TTFT observed for Gemini-Q.

TTFT across Client Locations. Figure 8 presents the TTFT mea-
sured when the client is located in Western-1 and Middle-1. The
results are for queries from everyday topics, and those from elemen-
tary science questions show similar trends. Comparing Figures 7
and 8, we can observe the impact of entry server geolocation on

IMC ’25, October 28-31, 2025, Madison, W1, USA

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

Figure 7: Time to first token (TTFT) with
input queries from everyday topics and
elementary science questions of Every-
day Conversations for LLMs dataset [33].
F/P denotes free/paid tier.

TTFT. Specifically, the TTFT results for Western-1 and Eastern-1
are comparable across all applications, consistent with their sim-
ilar RTTs to the entry servers in these regions (§4.2). In contrast,
measurements from Middle-1 show increased TTFT, ranging from
30 to 300 ms on average, potentially revealing the impact of TTFT
introduced by longer physical distance to the entry server (§4.2).
Note that the increase in RTT between the client and the entry
server is only ~40 ms (Table 1). Any additional increase in TTFT
beyond that may be attributed to potential changes in the backend
triggered by client relocation, which are not visible to us.

The latency incurred in the network may account for only a small
fraction of the total TTFT. For instance, as previously reported,
for Gemini, the latency introduced by transmission mechanisms is
150-250 ms, while its TTFT is ~3s. Thus, the dominant contributor
to TTFT likely lies in LLM inference, which is influenced by factors
such as input length and model complexity [60]. To reduce model
complexity, model compression [62] is a promising solution. More-
over, performing system-level optimizations, such as key-value
(KV) caching [60, 118], can contribute to TTFT reduction.

TTFT Optimizations. The results above reveal that the TTFT
for these applications can exceed 3s, on average, even for input
queries from simple everyday conversations. Naturally, more com-
plex queries (e.g., with longer user inputs) are expected to incur
even higher TTFT [60]. This raises the question of whether these
applications implement optimizations to reduce TTFT. Consider-
ing the LLM backend receives a continuous stream of speech in
real time, one potential optimization is incremental inference (e.g.,
starting to process partial input as it is received and repeating the
inference multiple times during the user’s speech) to reduce TTFT.

To explore whether this optimization is adopted, we design a
controlled experiment with two query types: a short query serving
as the baseline and a long query intended to reveal such optimiza-
tions if present. Both queries ask the applications to complete the
same task, which, in our case, is to write an essay. The long query is
structured to progressively provide additional context and require-
ments after stating initially the same prompt as the short query.
If no optimization exists, we expect the TTFT for the long query
to be higher than that of the short one [60]. Conversely, if incre-
mental inference is applied, it can reduce the final workload by
enabling a shorter TTFT compared to processing the full query

Figure 8: TTFT for six applications
with input queries from everyday
topics when the client is in Western-1
and Middle-1. Results from elementary
science questions are similar.

35 .-. E'veryl/day' \'\\\\\W'Scie'ncei = EEE Westen-l =W Middle-1 @ @@ Short S Long ;

7 8 0 T 1 T T RO O =t T O U O DL S | B O
YU Rel iiieliEeiEm S0 P T T e 3R
o3 TR RN BN AN B = I P RN RN EN o i i i i i 137.1%132.0%
B Lol R TRER IR T s Sl BRI B 0 @t T gl g
Cogzgling 1 iem 0 T2hsiEied é Pl T b e
Bliéeigehe e ;é . slﬁaiéa a L O o one N I -

o S A A B) [A A A @ | D H H

€ I = Loy = : : : : : :
= H H H H H H H H H < H H H H H H L H H €0

POt e & L af ottt T OetNReE T ot ottt i BTG w6 Wh et oo ®

Figure 9: TTFT for short and long queries
designed to reveal potential optimizations.
The numbers shown for each application
indicate the percentage (%) increase in the
average TTFT from short to long queries.

at once, potentially achieving a latency close to that of the short
query. We provide the details of the short query and long query in
Appendix C.

Figure 9 presents the TTFT results of six applications for both
queries. We observe that for Instagram, Messenger, and WhatsApp,
the TTFT of the long query increases by less than 1% on average
compared to that of the short query, consistently remaining under
2s. In contrast, other applications exhibit TTFT increases exceed-
ing 25% on average, with the most pronounced result observed in
ChatGPT-F, reaching an average TTFT of 8s, >6s longer than Meta’s
three applications. Given that Instagram, Messenger, and WhatsApp
rely on the same LLM backend (§2), these results indicate that Meta
may implement incremental inference optimizations that process
user input progressively during the speaking phase, reducing TTFT
for long queries. While this technique lowers TTFT, it incurs addi-
tional computational and financial costs [20], since inference will
be executed multiple times for a single user query.

We also observe that ChatGPT-F exhibits higher TTFT compared

to ChatGPT-P by ~2s on average for both the short and long queries.
This suggests that OpenAl may provision a less capable LLM model
for the free tier. On the other hand, across the TTFT measurements
in Figures 7, 8, and 9, we observe no significant difference between
Gemini-F and Gemini-P.
Summary: Our measurements reveal that both call setup time and
TTFT of evaluated applications remain at the second level, high-
lighting the need for further optimization. For reducing call setup
time, Gemini demonstrates a promising approach by minimizing the
number of network connections required to establish the session.
Regarding TTFT, our results indicate that network-level factors
such as uplink transmission strategy (e.g., streaming vs. batching)
and server proximity can provide measurable improvements. Our
measurements further show that Meta may mitigate the impact of
long inputs through incremental inference, which reduces process-
ing delay by handling partial inputs progressively.

4.5 Network Disruptions

In this section, we evaluate the robustness of GenAlI calling ap-
plications under adverse network conditions. Specifically, we in-
vestigate their behavior under 1) complete connection loss and
2) constrained bandwidth scenarios. We select queries from the

Hello, GenAl? Dissecting Human to Generative Al Calling

. Backup Entry Server

Application Numbelz Fa}illover ® Recovery (s)
Instagram 1 4.03/0.44 1.18/0.12
Messenger 1 3.98/0.38 1.21/0.15
WhatsApp 2 1.19/0.17 1.10/0.11
ChatGPT X X

Copilot X 1.72/0.42 (4.23/1.12)*

Gemini X X

Table 2: Summary of application behaviors under connec-
tion blocking and unblocking. We first block the connection
between the client and the entry server to assess whether the
application supports failover to a backup server, and if so,
report the number of backup servers and failover time. We
then unblock the connection to measure the time required
to restore functionality. *: Upon recovery, Copilot does not
resume the original conversation but instead initiates a new
session; values outside (inside) parentheses indicate recov-
ery to a previously established (newly initiated) entry server,
respectively. All time-related results are reported as aver-
age/standard deviation.

Everyday Conversations for LLMs dataset [33] that trigger the long
response, which activate the high-throughput mode observed in
Copilot and Gemini (§4.3).

Connection Blocking. We use iptables [97] to block uplink and
downlink traffic between the client and the entry server while the
GenAl is actively responding. We monitor whether the application
attempts to fail over to a backup server and, if so, continue blocking
subsequent connections until the application ceases to function.
After that, we unblock the connection to assess whether the ap-
plication can be restored. We define failover time as the duration
from blocking the connection to the resumption of smooth, unin-
terrupted GenAl responses, and recovery time as the duration from
unblocking the connection to the resumption of smooth, uninter-
rupted GenAl responses.

Bandwidth Throttling. We apply bandwidth constraints on uplink
and downlink traffic with tc-netem [50]. For each application and
each direction of traffic, we gradually reduce the available band-
width from the 95th percentile to the 5th percentile, with steps of 5
percentile intervals, based on the throughput distributions shown
in Figures 4(a) and 5(a).

Connection Blocking. Table 2 summarizes the reaction of each
application after the connection is blocked/unblocked.

® WhatsApp demonstrates fast failover by switching to one of its
four other candidate entry servers with pre-established connec-
tions (§4.2) when the current entry server is blocked. This process
continues when other candidate servers are blocked until none
are available, at which point the application stops functioning. Be-
cause these connections are already established prior to failure,
the failover time is relatively short, with 1.19s on average. Once all
candidate servers are blocked, functionality can only be restored
by unblocking either the initially selected server or the last used
backup server. WhatsApp will not attempt to establish new connec-
tions with other servers beyond the initial three. Note that when
functionality is restored in this manner, WhatsApp preserves the

IMC ’25, October 28-31, 2025, Madison, W1, USA

ongoing conversation context, allowing the GenAlI to resume its
response without restarting the calling session. The recovery time
in these cases is also short, averaging 1.10s.

o Instagram and Messenger rely on a Traversal Using Relays around
NAT (TURN) [63] server from Meta to maintain functionality after
their entry server is blocked, a typical usage of the TURN server [63].
However, since this involves establishing a new network connec-
tion, both applications have an average failover time of ~4s, which is
~3s longer than that of WhatsApp. If the TURN server is subsequently
blocked, both applications lose functionality entirely. It can be re-
stored by unblocking either the entry server or the TURN server,
with a recovery time of ~1s on average, as the client has already
established connections with both servers. Similar to WhatsApp, this
restoration preserves the conversation context.

e ChatGPT maintains a server that the client connects to using
TCP/H2 after its primary entry server is blocked. However, this
connection fails to preserve functionality. Thus, this TCP/H2 server
may be intended merely to maintain a control channel and wait
passively for the recovery of the original server, rather than actively
supporting media delivery. However, we find that even after the
entry server is unblocked, ChatGPT still cannot recover, with the
purpose of this additional TCP/H2 server remaining unknown.

e Copilot does not utilize any backup entry server. Once the ini-
tial entry server becomes unreachable, the application stops func-
tioning. When the connection is unblocked, Copilot can recover
functionality but does not resume the interrupted conversation.
Instead, it restarts a new session from scratch. In other words, it re-
establishes connectivity but loses the conversational context. This
behavior contrasts with Meta’s three applications, which preserve
the ongoing conversation state after restoration. This difference
likely stems from the underlying transport protocols. TCP employed
by Copilot requires maintaining an active connection with peri-
odic acknowledgments to keep the session alive. In contrast, UDP
employed by Meta’s applications is connectionless and stateless,
allowing clients to continue sending packets to the same connection
once unblocked.

Upon reconnection, Copilot shows two distinct, non-deterministic
behaviors. One is to re-establish the connection with the original
entry server, with a mean recovery time of 1.72s. The other is to
initiate a connection with a new server, which takes 4.23s on av-
erage. This additional delay of 2.51s reflects the extra overhead
of establishing a new connection to the entry server, which can
potentially explain the long call setup time of Copilot (§4.4).

o Gemini does not employ any automatic failover mechanism (e.g.,
backup server) to maintain the session once the entry server is
blocked. After losing connection, it presents a fallback screen stat-
ing that “something went wrong” along with a user-facing “try again”
button. Once the entry server is unblocked, it requires explicit user
interaction by clicking “try again”, which allows the user to re-
establish a new session but not restore the existing one.

Bandwidth Throttling. In the uplink, all applications, regardless
of the underlying transport protocol or employed transmission
method (as examined in §4.2 and §4.3), fail to function when the
available bandwidth becomes insufficient. This observation also
applies to the downlink for applications that utilize streaming-
based transmission, including ChatGPT, Instagram, Messenger, and

IMC ’25, October 28-31, 2025, Madison, W1, USA

WhatsApp. These results indicate that none of the evaluated appli-
cations implement adaptive bitrate streaming [42, 54, 93], which
dynamically switches between different transmission rates, for
instance, by adjusting audio encoding quality, to accommodate
varying network conditions.

One might argue that bandwidth-driven adaptations are less
critical for low-bitrate services such as Meta’s three applications,
which consume ~50 Kbps on average (§4.3). However, this assump-
tion is challenged by Meta’s recent development of MLow [69], a
low-bitrate audio codec capable of operating at bitrates as low as
6 Kbps. Despite this advancement, our measurements reveal no
evidence that Meta’s GenAl calling applications have adopted it to
enhance robustness against bandwidth limitations.

For Copilot and Gemini that employ the batch-based mechanism
on the downlink, we find that they can maintain functionality only
when the available downlink bandwidth exceeds 1500 Kbps and
300 Kbps, respectively. When bandwidth drops below these levels,
audio playback begins to lag and eventually breaks up, indicating
that the download rate cannot keep up with the playback speed.
This result shows that Copilot requires a minimum of 1500 Kbps
to function properly, significantly higher than the few hundred
Kbps needed by other applications, thereby limiting its usability on
constrained network connections.

Summary: Our experiments reveal that the evaluated applications
generally lack robust mechanisms to handle connection failures or
constrained bandwidth conditions. Among them, WhatsApp stands
out as the only one with proactive failover support, pre-establishing
connections to multiple backup servers during call initiation. This
design allows it to quickly switch over in the event of a connection
failure. However, none of the applications exhibit adaptive behav-
ior in response to limited bandwidth. These findings suggest that
developers may currently deprioritize handling poor networking
conditions, perhaps viewing them as rare or non-critical corner
cases. Nonetheless, building resilience to variable and constrained
network environments is crucial for GenAlI calling, especially given
that users may often access the service on mobile devices over wire-
less networks, where connectivity is inherently unstable [68, 110].

4.6 Comparison with Voice Assistants

Finally, we measure traditional voice-assistant applications that
do not employ LLMs, which can be considered as predecessors to
GenAlI calling, and compare them with our studied GenAI calling
applications. We use the same input queries (§3) as in our measure-
ments for GenAlI calling to enable a fair comparison. Specifically, we
use a Google Pixel 8a to access and measure Google Assistant [39],
and an iPhone 14 Pro to access and measure Apple Siri [10]. Both
applications require Internet connectivity to function, meaning that
user voice inputs are transmitted to backend servers for process-
ing. Thus, their uplink transmission content is similar to that of
GenAlI calling applications. We observed that Google Assistant em-
ploys QUIC/H3 in the uplink with a streaming-based transmission
strategy, similar to Gemini, while Apple Siri uses TCP/H2 in the up-
link with batch-based transmission similar to Copilot (§4.3). In the
downlink, however, these voice assistants differ fundamentally from
GenAl calling. Since they do not employ LLMs, they cannot provide
open-ended responses to diverse queries. Instead, they typically

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

return non-informative fallback replies such as “I cannot answer
this”, or “here is the information I searched” and redirect the query
to a web search engine and display the results. Consequently, in
addition to a short audio message, these applications may transmit
supplemental data such as search results or external links, rather
than generating a fully conversational response. This highlights
the most significant distinction between traditional voice assistants
and GenAI calling applications.

5 Discussion

Quality of GenAl Responses. Our measurement reveals that the
response quality of GenAl calling applications is intricately linked
to a fundamental system design trade-off between latency and re-
sponse quality: low TTFT may enhance interactivity but at the
expense of response depth, content richness, or even accuracy. For
example, ChatGPT exhibited a noticeably higher TTFT compared to
Instagram, Messenger, and WhatsApp. However, ChatGPT consistently
returned comprehensive answers (e.g., detailed, structured essays),
suggesting that it may prioritize output quality over responsiveness.
Moreover, response quality is inherently subjective and difficult
to quantify. Existing metrics such as ROUGE [58], BLEU [86], and
inform rate [15, 117] are widely used in natural language gener-
ation tasks, but they often fail to capture contextual relevance or
user satisfaction. Additionally, the audio input modality used by
ChatGPT-P and Gemini may introduce further latency while aiming
to preserve nuanced cues for better comprehension. These observa-
tions highlight the need for user studies or task-specific evaluation
frameworks to complement existing metrics and better assess the
quality of GenAl responses.

Large-scale Crowd-sourced Experiments. Although our mea-
surement study covers 6,000 calls (§3), further insights could be
gained through large-scale crowd-sourced experiments, which would
enable the evaluation of GenAl calling applications from more di-
verse perspectives. For example, such experiments could measure
performance across different countries and track changes over time
to reveal potential design improvements introduced by these ser-
vice providers. In addition, we can further distinguish between
client network types (e.g., cellular vs. WiFi) and collect network
condition metrics (e.g., RTT and packet loss) to analyze how vary-
ing network conditions affect GenAlI calling performance. To this
end, we are developing an open-source measurement framework,
extending our existing tools for quantifying call setup time (§4.4),
in order to support large-scale crowd-sourced studies and facilitate
the evaluation of GenAl calling applications in the wild.

Inspecting Encrypted Traffic. Given that all studied applications
encrypt their traffic (e.g., TLS over TCP/H2 and QUIC/H3, or DTLS
over UDP/RTP, as presented in §4.2), we are unable to perform direct
inspection of the payload. However, analyzing encrypted traffic
could help us better understand how these applications function, for
instance, the specific audio codec employed and the exact batching
strategy for aggregating audio frames. As TLS/DTLS are designed
for end-to-end encryption [102], simply utilizing the man-in-the-
middle attack cannot get the TLS/DTLS certificate, and thus it is
challenging to directly decrypt the traffic. Given these constraints,
we can turn to what can be inferred from side channels. Prior studies
have shown that analyzing IP headers [101] and packet transmission

Hello, GenAl? Dissecting Human to Generative Al Calling

patterns [75] may help better understand the media traffic, which is
also applicable to GenAlI calling that delivers audio over the network.
Moreover, a recent effort from Ahmed et al. [3] exploited encrypted
network traffic from voice-assistant applications to implement a
voice fingerprinting attack that revealed certain information, such
as user activities. By analogy, similar fingerprinting methods may
help characterize GenAl calling traffic.

Privacy & Ethical Concerns. The deployment of human-to-GenAI
calling on mobile platforms raises important privacy and ethical
concerns, as these applications require continuous access to the
microphone and capture not only the user’s voice but also ambient
sounds. While such data is essential for delivering real-time, context-
aware responses, it introduces risks related to unauthorized storage,
prolonged retention, and potential third-party sharing [3, 45, 57,
100, 115]. Moreover, the potential integration of multi-modal inputs,
such as camera-based context, further amplifies these concerns, as
visual data may inadvertently reveal sensitive information about the
user’s environment [1, 94, 106, 114]. Future research should explore
privacy-preserving schemes to reduce exposure while maintaining
functionality in GenAl calling.

Early Stage. Human-to-GenAl calling applications are in their
infancy and are expected to evolve dramatically in the near fu-
ture. The rapid development of underlying large language mod-
els [80, 82, 107, 111], improvements in real-time inference effi-
ciency [2, 34, 51, 60, 120], and growing integration of multi-modal
inputs [14, 30, 59, 74, 80, 89] suggest that both the capabilities
and system architectures of these services are in flux. As service
providers experiment with new features, user experience and net-
work behaviors will likely shift accordingly. Consequently, this
work represents only a snapshot of a fast-changing landscape. Fu-
ture studies will be needed to track the evolution of these applica-
tions and revisit our key findings as existing platforms evolve.

Other Applications. While our study focuses on six representative
applications, it is important to acknowledge that this selection is
not exhaustive. Human-to-GenAl calling applications are rapidly
growing, with new services and features continually emerging. As
a result, our findings represent a valuable yet partial view of the
current ecosystem. Expanding future measurements to include a
broader and more diverse set of applications will be essential for
developing a comprehensive understanding of this emerging space.

6 Related Work

Human-to-human Calling. Applications such as FaceTime, Skype,
and Telegram have been extensively studied from various perspec-
tives, including network performance, traffic patterns, and protocol
behavior [4, 16, 18, 49, 53, 65, 87, 105]. For example, Chen et al. [18]
proposed a novel model to quantify Skype user satisfaction using
network trace data, thereby eliminating the need for cumbersome
user studies. In contrast, our work investigates the emerging par-
adigm of human-to-GenAl calling, where users interact with AI
agents via voice. This shift introduces new performance challenges,
such as LLM inference latency, which do not present in conven-
tional calling applications.

Measurement of other RTC Applications. Extensive prior work
has examined the performance of video conferencing platforms

IMC ’25, October 28-31, 2025, Madison, W1, USA

such as Zoom, Webex, and Microsoft Teams [17, 75, 101, 110]. Other
studies have focused on immersive telepresence systems [25] and
social virtual reality platforms in the metaverse [23, 24, 61], in-
vestigating their latency, bandwidth demands, and resiliency. Ad-
ditionally, a growing body of work examines the performance of
cloud-based gaming platforms [44, 116]. In contrast to these efforts,
we measure a new class of GenAl-powered RTC applications that
enable real-time, voice-based interactions.

Voice Assistant. Several prior studies have investigated voice as-
sistants such as Apple Siri and Google Assistant, driven by concerns
in the security and privacy community [3, 5, 12, 45, 57, 88, 100, 115].
For example, Ahmed et al. [3] proposed a voice fingerprinting at-
tack that can reveal user activities based on the network traffic.
Igbal et al. [45] developed a measurement framework to analyze
data collection, usage, and sharing behaviors in voice assistants.
In contrast, our work measures the performance of voice-enabled,
LLM-powered applications that support real-time interactions.

LLM Serving has garnered significant attention from both the
systems and machine learning communities. A number of recent
studies have proposed system-level optimizations to improve LLM
inference efficiency [2, 6, 34, 35, 51, 60, 118, 120, 122]. For example,
PagedAttention introduced a virtual memory- and paging-inspired
attention mechanism to support high-throughput LLM serving [51].
Concurrently, the machine learning community has explored effi-
cient attention mechanisms for LLM serving [19, 29, 91, 103, 104].
In contrast to these efforts, which focus on backend optimizations,
our work centers on measuring the end-to-end performance of
GenAlI calling applications.

7 Conclusion

In this paper, we presented the first comprehensive measurement
study of human-to-GenAlI calling applications that integrate voice
interactions with LLMs to support dynamic, real-time conversa-
tions. By analyzing six representative applications, we shed light
on their end-to-end operational workflows, including input modali-
ties, network behavior, latency metrics, and resilience to adverse
network conditions. For example, our measurements reveal sig-
nificant latency overheads (e.g., several seconds for a complete
conversational exchange), far exceeding the responsiveness ex-
pected in traditional human-to-human voice communication. Our
findings highlight the need for future system designs that prior-
itize low-latency performance. As GenAlI calling matures into a
mainstream communication modality, we hope our work serves
as a foundational reference for building scalable, responsive, and
resilient voice-driven Al experiences.

Acknowledgment

We thank the anonymous reviewers and our shepherd for their
insightful feedback, which has greatly strengthened this work. We
also thank Bo Chen and Nan Wu for their assistance in setting up
experiments across different locations. No Meta resources were
used for this paper. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of Meta. This work
was partially supported by the National Science Foundation under
Grants CNS-2212296, NeTS-2402992, and NeTS-2437203.

IMC ’25, October 28-31, 2025, Madison, W1, USA

References

[1] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Be-

(14

[15

[16

[18

[19

[20

[22

nenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu.
2016. I-Pic: A Platform for Privacy-Compliant Image Capture. In Proceedings
of ACM Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys). https://doi.org/10.1145/2906388.2906412

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,
Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ramjee. 2024. Taming
Throughput-Latency Tradeoff in LLM Inference With Sarathi-Serve. In Proceed-
ings of USENIX Symposium on Operating Systems Design and Implementation
(OSDI). https://www.usenix.org/conference/osdi24/presentation/agrawal
Dilawer Ahmed, Aafaq Sabir, and Anupam Das. 2023. Spying Through Your
Voice Assistants: Realistic Voice Command Fingerprinting. In Proceedings of
USENIX Security Symposium (USENIX Security). https://www.usenix.org/
conference/usenixsecurity23/presentation/ahmed- dilawer

Waqas Ahmed, Faisal Shahzad, Abdul Rehman Javed, Farkhund Igbal, and
Liaqat Ali. 2021. WhatsApp Network Forensics: Discovering the IP Addresses
of Suspects. In Proceedings of IFIP International Conference on New Technologies,
Mobility and Security (NTMS). https://doi.org/10.1109/NTMS49979.2021.9432677
Ahmad Alhilal, Kirill Shatilov, Gareth Tyson, Tristan Braud, and Pan Hui. 2023.
Network Traffic in the Metaverse: The Case of Social VR. In Proceedings of IEEE
International Conference on Distributed Computing Systems Workshops (ICDCS
Workshops).

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li,
Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley,
et al. 2022. Deepspeed-Inference: Enabling Efficient Inference of Transformer
Models at Unprecedented Scale. In Proceedings of ACM International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).
Android. 2025. Android Developers: SpeechRecognizer. https://developer.
android.com/reference/android/speech/SpeechRecognizer. [accessed on
09/30/2025].

Android. 2025. Android Developers: TextToSpeech. https://developer.android.
com/reference/android/speech/tts/package-summary. [accessed on 09/30/2025].
Anthropic. 2025. Claude. https://claude.ai. [accessed on 09/30/2025].

Apple. 2025. Siri. https://www.apple.com/siri/. [accessed on 09/30/2025].
Apple Inc. 2025. Siri. https://www.apple.com/siri/. [accessed on 09/30/2025].
Mehdi Assefi, Mike Wittie, and Allan Knight. 2015. Impact of Network
Performance on Cloud Speech Recognition. In Proceedings of IEEE Interna-
tional Conference on Computer Communication and Networks (ICCCN). https:
//doi.org/10.1109/ICCCN.2015.7288417

Marcelo Bagnulo, Philip Matthews, and Iljitsch van Beijnum. 2011. RFC 6146:
Stateful NAT64: Network Address and Protocol Translation from IPvé Clients to
IPv4 Servers. https://www.rfc-editor.org/rfc/rfc6146. [accessed on 09/30/2025].
Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai
Dang, Peng Wang, Shijie Wang, Jun Tang, et al. 2025. Qwen2. 5-VL Technical
Report. https://doi.org/10.48550/arXiv.2502.13923. [accessed on 09/30/2025].
Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A Multitask,
Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination,
and Interactivity. In Proceedings of International Joint Conference on Natural
Language Processing and Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics. https://doi.org/10.18653/v1/2023.ijcnlp-main.45
Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo Tofanelli.
2007. Revealing Skype Traffic: When Randomness Plays With You. In Proceedings
of ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM). https://doi.org/10.1145/1282380.
1282386

Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. 2021. Can
You See Me Now? A Measurement Study of Zoom, Webex, and Meet. In Pro-
ceedings of ACM IMC. https://dl.acm.org/doi/abs/10.1145/3487552.3487847
Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. 2006.
Quantifying Skype User Satisfaction. In Proceedings of ACM SIGCOMM. https:
//doi.org/10.1145/1151659.1159959

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krish-
namurthy. 2024. Punica: Multi-Tenant LoRA Serving. In Proceedings of Machine
Learning and Systems (MLSys). https://proceedings.mlsys.org/paper_files/paper/
2024/file/054de805fcceb78a201f5¢9d53¢85908- Paper-Conference.pdf

Lingjiao Chen, Matei Zaharia, and James Zou. 2023. FrugalGPT: How to Use
Large Language Models While Reducing Cost and Improving Performance.
https://doi.org/10.48550/arXiv.2305.05176. [accessed on 09/30/2025].

Qian Chen, Yafeng Chen, Yanni Chen, Mengzhe Chen, Yingda Chen, Chong
Deng, Zhihao Du, Ruize Gao, Changfeng Gao, Zhifu Gao, et al. 2025.
MinMo: A Multimodal Large Language Model for Seamless Voice Interaction.
https://arxiv.org/abs/2501.06282. [accessed on 09/30/2025].

Zhiyang Chen, Yun Ma, Haiyang Shen, and Mugeng Liu. 2025. Welnfer: Unleash-
ing the Power of WebGPU on LLM Inference in Web Browsers. In Proceedings
of ACM Web Conference (WWW). https://doi.org/10.1145/3696410.3714553

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

[23]

[24

[25

[26

[27

[28]

[29]

[30

[31

[32

[33

[34]

[35

[36

[37
[38

[39

[40

[41

[42

[43
[44

[45

[46]

[47

[48]

Ruizhi Cheng, Nan Wu, Songqing Chen, and Bo Han. 2022. Reality Check
of Metaverse: A First Look at Commercial Social Virtual Reality Platforms.
In Proceedings of IEEE Workshop for Building the Foundations of the Metaverse
(Metabuild), co-located with IEEE Conference on Virtual Reality and 3D User
Interfaces (VR).

Ruizhi Cheng, Nan Wu, Songging Chen, and Bo Han. 2022. Will Metaverse be
NextG Internet? Vision, Hype, and Reality. IEEE Network 36 (2022), 197-204.
Ruizhi Cheng, Nan Wu, Matteo Varvello, Eugene Chai, Songging Chen, and Bo
Han. 2024. A First Look at Immersive Telepresence on Apple Vision Pro. In
Proceedings of ACM IMC.

Ruizhi Cheng, Nan Wu, Matteo Varvello, Songqing Chen, and Bo Han. 2022.
Are We Ready for Metaverse? A Measurement Study of Social Virtual Reality
Platforms. In Proceedings of ACM IMC.

Ruizhi Cheng, Guowu Xie, and Bo Han. 2025. Real-time Human and Generative
Al Interaction: Network Challenges and Opportunities. In arXiv.

CNBC. 2025. Apple delays Siri AI improvements to 2026.
https://www.cnbc.com/2025/03/07/apple-delays-siri-ai-improvements-to-
2026.html. [accessed on 09/30/2025].

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. Flashattention: Fast and Memory-Efficient Exact Attention With IO-
Awareness. In Proceedings of Advances in Neural Information Processing Sys-
tems (NeurIPS). https://proceedings.neurips.cc/paper_files/paper/2022/file/
67d57¢32e20fd0a7a302cb81d36e40d5-Paper- Conference.pdf

Google DeepMind. 2025. Gemini 2.5. https://blog.google/technology/google-
deepmind/gemini-model-thinking-updates-march-2025/. [accessed on
09/30/2025].

Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu, Kshitiz Malik, and Zhou
Yu. 2023. Towards Next-Generation Intelligent Assistants Leveraging LLM
Techniques. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. https://dl.acm.org/doi/abs/10.1145/3580305.3599572
ElevenLabs. 2025. ElevenLabs: Text to Speech & Al Voice Generator. https:
//elevenlabs.io/. [accessed on 09/30/2025].

Hugging Face. 2024. Everyday Conversations for LLMs. https://huggingface.co/
datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k.

Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov,
Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-Latency Serverless In-
ference for Large Language Models. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI). https://www.usenix.org/
conference/osdi24/presentation/fu

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo
Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. 2024. Cost-Efficient Large
Language Model Serving for Multi-Turn Conversations With CachedAttention.
In Proceedings of USENIX Annual Technical Conference (USENIX ATC).

Google. 2024. Gemini 2.0 Flash. https://cloud.google.com/vertex-ai/generative-
ai/docs/models/gemini/2-0-flash. [accessed on 09/30/2025].

Google. 2025. Gemini. https://gemini.google.com/. [accessed on 09/30/2025].
Google. 2025. Gemini 2.5 Flash. https://cloud.google.com/vertex-ai/generative-
ai/docs/models/gemini/2-5-flash. [accessed on 09/30/2025].

Google. 2025. Google Assistant. https://assistant.google.com/. [accessed on
09/30/2025].

Google DeepMind. 2024. Gemini. https://gemini.google.com/app. Accessed:
2025-05-01.

hagezi. 2023. VS Code Telemetry. https://github.com/StevenBlack/hosts/issues/
2301#issuecomment-1518564889. [accessed on 09/30/2025].

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proceedings of ACM SIGCOMM.

ipinfo.io. 2024. https://ipinfo.io/. [accessed on 09/30/2025].

Hassan Igbal, Ayesha Khalid, and Muhammad Shahzad. 2021. Dissecting Cloud
Gaming Performance with DECAF. In Proceedings of ACM Measurement and
Analysis of Computing Systems (SIGMETRICS).

Umar Igbal, Pouneh Nikkhah Bahrami, Rahmadi Trimananda, Hao Cui, Alexan-
der Gamero-Garrido, Daniel] Dubois, David Choffnes, Athina Markopoulou,
Franziska Roesner, and Zubair Shafiq. 2023. Tracking, Profiling, and Ad Target-
ing in the Alexa Echo Smart Speaker Ecosystem. In Proceedings of ACM IMC.
https://doi.org/10.1145/3618257.3624803

The International Telecommunication Union Telecommunication Standard-
ization Sector (ITU-T). 2003. One-way Transmission Time for the General
Recommendations on the Transmission Quality for an Entire International
Telephone Connection. https://www.itu.int/rec/t-rec-g.114-200305-1.
Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: En-
abling Data-Driven Quality of Experience Optimization Using Group-Based
Exploration-Exploitation. In Proceedings of USENIX NSDIL

Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a Long Look at QUIC: An Approach for Rigorous
Evaluation of Rapidly Evolving Transport Protocols. In Proceedings of ACM
IMC.

https://doi.org/10.1145/2906388.2906412
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer
https://doi.org/10.1109/NTMS49979.2021.9432677
https://developer.android.com/reference/android/speech/SpeechRecognizer
https://developer.android.com/reference/android/speech/SpeechRecognizer
https://developer.android.com/reference/android/speech/tts/package-summary
https://developer.android.com/reference/android/speech/tts/package-summary
https://claude.ai
https://www.apple.com/siri/
https://www.apple.com/siri/
https://doi.org/10.1109/ICCCN.2015.7288417
https://doi.org/10.1109/ICCCN.2015.7288417
https://www.rfc-editor.org/rfc/rfc6146
 https://doi.org/10.48550/arXiv.2502.13923
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.1145/1282380.1282386
https://doi.org/10.1145/1282380.1282386
https://dl.acm.org/doi/abs/10.1145/3487552.3487847
https://doi.org/10.1145/1151659.1159959
https://doi.org/10.1145/1151659.1159959
https://proceedings.mlsys.org/paper_files/paper/2024/file/054de805fcceb78a201f5e9d53c85908-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/054de805fcceb78a201f5e9d53c85908-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2305.05176
https://doi.org/10.1145/3696410.3714553
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://dl.acm.org/doi/abs/10.1145/3580305.3599572
https://elevenlabs.io/
https://elevenlabs.io/
https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k
https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k
https://www.usenix.org/conference/osdi24/presentation/fu
https://www.usenix.org/conference/osdi24/presentation/fu
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://gemini.google.com/
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://assistant.google.com/
https://gemini.google.com/app
https://github.com/StevenBlack/hosts/issues/2301##issuecomment-1518564889
https://github.com/StevenBlack/hosts/issues/2301##issuecomment-1518564889
https://ipinfo.io/
https://doi.org/10.1145/3618257.3624803
https://www.itu.int/rec/t-rec-g.114-200305-i

Hello, GenAl? Dissecting Human to Generative Al Calling

(49]

[50

[51]

o
&,

(53]

(54

[57

[58

=
22,

(60

[61

[62

o
&

=
=)

Filip Karpisek, Ibrahim Baggili, and Frank Breitinger. 2015. WhatsApp Network
Forensics: Decrypting and Understanding the WhatsApp Call Signaling Mes-
sages. Digital Investigation 15 (2015). https://doi.org/10.1016/j.diin.2015.09.002
Michael Kerrisk. 2000. tc-netem(8) — Linux manual page. https://man7.org/
linux/man-pages/man8/tc-netem.8.html. [accessed on 09/30/2025].

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving With Pagedatten-
tion. In Proceedings of Symposium on Operating Systems Principles (SOSP).
https://doi.org/10.1145/3600006.3613165

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi,
Steve Ko, Sangeun Oh, and Insik Shin. 2024. MobileGPT: Augmenting LLM
with Human-Like App Memory for Mobile Task Automation. In Proceedings
of ACM Annual International Conference on Mobile Computing and Networking
(MobiCom). https://dl.acm.org/doi/10.1145/3636534.3690682

Li Li, Ke Xu, Dan Wang, Chunyi Peng, Kai Zheng, Haiyang Wang, Rashid
Mijumbi, and Xiangxiang Wang. 2017. A Measurement Study on Skype Voice and
Video Calls in LTE Networks on High Speed Rails. In Proceedings of IEEE/ACM
International Symposium on Quality of Service (IWQoS). https://doi.org/10.1109/
IWQo0S.2017.7969110

Weihe Li, Jiawei Huang, Wenjun Lyu, Baoshen Guo, Wanchun Jiang, and Jianxin
Wang. 2022. RAV: Learning-Based Adaptive Streaming to Coordinate the Audio
and Video Bitrate Selections. IEEE Transactions on Multimedia 25 (2022), 5662
5675.

Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. 2018. Internet
Anycast: Performance, Problems, & Potential. In Proceedings of ACM SIGCOMM.

Xinyu Lian, Yinfang Chen, Runxiang Cheng, Jie Huang, Parth Thakkar, Min-
jia Zhang, and Tianyin Xu. 2024. Large Language Models as Configuration
Validators. In Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE). https://www.computer.org/csdl/proceedings-article/icse/
2025/056900a204/215aWCaXISg

Song Liao, Christin Wilson, Long Cheng, Hongxin Hu, and Huixing Deng. 2020.
Measuring the Effectiveness of Privacy Policies for Voice Assistant Applications.
In Proceedings of Annual Computer Security Applications Conference (ACSAC).
https://doi.org/10.1145/3427228.3427250

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Proceedings of Text Summarization Branches Out. https://aclanthology.org/
W04-1013/

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual
Instruction Tuning. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS). https://proceedings.neurips.cc/paper_files/paper/2023/file/
6dcf277ea32ce3288914faf369fe6de0-Paper- Conference.pdf

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng
Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. 2024.
CacheGen: KV Cache Compression and Streaming for Fast Large Language
Model Serving. In Proceedings of ACM SIGCOMM.

Minzhao Lyu, Rahul Dev Tripathi, and Vijay Sivaraman. 2023. Metavradar:
Measuring Metaverse Virtual Reality Network Activity. In Proceedings of ACM
Measurement and Analysis of Computing Systems (SIGMETRICS). https://doi.
org/10.1145/3626786

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. LLM-Pruner: On the
Structural Pruning of Large Language Models. Proceedings of Advances in
Neural Information Processing Systems (NeurIPS).

Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. 2010. RFC 5766: Tra-
versal Using Relays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN). https://www.rfc-editor.org/rfc/rfc5766. [accessed on
09/30/2025].

Yacine Majdoub and Eya Ben Charrada. 2024. Debugging With Open-Source
Large Language Models: An Evaluation. In Proceedings of ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement. https:
//dl.acm.org/doi/abs/10.1145/3674805.3690758

Natalia M Markovich and Udo R Krieger. 2010. Statistical Analysis and Modeling
of Skype VoIP Flows. Computer Communications 33 (2010). https://doi.org/10.
1016/j.comcom.2010.04.029

MaxMind. 2024. https://www.maxmind.com/en/home. [accessed on 09/30/2025].
Trevor Mendez, Walter Milliken, and Dr. Craig Partridge. 1993. Host Anycasting
Service. RFC 1546. https://www.rfc-editor.org/info/rfc1546 [accessed on
09/30/2025].

Jiayi Meng, Jingqi Huang, Y Charlie Hu, Yaron Koral, Xiaojun Lin, Muhammad
Shahbaz, and Abhigyan Sharma. 2023. Modeling and Generating Control-Plane
Traffic for Cellular Networks. In Proceedings of ACM IMC.

Meta. 2024. MLow: Meta’s low bitrate audio codec. https://engineering.fb.
com/2024/06/13/web/mlow-metas-low-bitrate-audio-codec/. [accessed on
09/30/2025].

Meta. 2025. Instagram. https://www.instagram.com/. [accessed on 09/30/2025].
Meta. 2025. Introducing the Meta Al App: A New Way to Access Your Al
Assistant. https://about.fb.com/news/2025/04/introducing-meta-ai-app-new-
way-access-ai-assistant/. [accessed on 09/30/2025].

[72]
[73]
[74]

175

[76
[77

[78

[79

[80]

[81
[82

[83

[84]

[85

[86

[87]

[88

[89

[90

[91

[92]

[93]

[94

[95]

[96

[97

[98

[99

IMC ’25, October 28-31, 2025, Madison, W1, USA

Meta. 2025. Messenger. https://www.messenger.com/.

Meta. 2025. WhatsApp. https://whatsapp.com/. [accessed on 09/30/2025].
Meta Platforms, Inc. 2025. The Llama 4 Herd: The Beginning of a New Era of Na-
tively Multimodal Al Innovation. https://ai.meta.com/blog/llama-4-multimodal-
intelligence/. [accessed on 09/30/2025].

Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rex-
ford. 2022. Enabling Passive Measurement of Zoom Performance in Production
Networks. In Proceedings of ACM IMC.

Microsoft. 2022. AltspaceVR. https://altvr.com/. [accessed on 09/30/2025].
Microsoft. 2024. Teams. https://www.microsoft.com/en-us/microsoft-teams/
group-chat-software. [accessed on 09/30/2025].

Microsoft. 2025. Copilot. https://copilot.microsoft.com/.
09/30/2025].

Microsoft Corporation. 2025. Skype. https://www.skype.com/en/. [accessed on
09/30/2025].

OpenAl. 2023. Gpt-4 Technical Report. https://arxiv.org/abs/2303.08774. [ac-
cessed on 09/30/2025].

OpenAl 2024. ChatGPT. https://openai.com/. Accessed: 2025-05-01.

OpenAl 2024. Gpt-4o System Card. https://arxiv.org/abs/2410.21276. [accessed
on 09/30/2025].

OpenAl 2025. ChatGPT. https://openai.com/index/chatgpt/.
09/30/2025].

OpenAl 2025. What is the ChatGPT model selector?
https://help.openai.com/en/articles/7864572-what-is-the-chatgpt-model-
selector. [accessed on 09/30/2025].

Victor Alexandru Padurean, Paul Denny, and Adish Singla. 2025. BugSpotter:
Automated Generation of Code Debugging Exercises. In Proceedings of ACM
Technical Symposium on Computer Science Education. https://dl.acm.org/doi/10.
1145/3641554.3701974

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings
of ACM Annual Meeting on Association for Computational Linguistics. https:
//doi.org/10.3115/1073083.1073135

Nayankumar Patel, Swapnil Patel, and Wee Lum Tan. 2018. Performance Com-
parison of WhatsApp Versus Skype on Smart Phones. In Proceedings of In-
ternational Telecommunication Networks and Applications Conference (ITNAC).
https://doi.org/10.1109/ATNAC.2018.8615445

Surendra Pathak, Sheikh Ariful Islam, Honglu Jiang, Lei Xu, and Emmett Tomai.
2022. A Survey on Security Analysis of Amazon Echo Devices. High-Confidence
Computing 2 (2022), 100087. https://www.sciencedirect.com/science/article/pii/
$2667295222000393

Anthropic PBC. 2024. Claude 3.5 Sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet. [accessed on 09/30/2025].

Android Police. 2025. Google Gemini vs. Gemini Advanced: All the key dif-
ferences explained. https://www.androidpolice.com/google-gemini-vs-gemini-
advanced/. [accessed on 09/30/2025].

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-
bury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently Scaling Transformer Inference. In Proceedings of Machine Learning and
Systems (MLSys). https://proceedings.mlsys.org/paper_files/paper/2023/file/
c4be71ab8d24cdfb45e3d06dbfca2780- Paper-mlsys2023.pdf

Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang Fu,
Xuemei Shi, Fangbo Zhu, Rui Miao, et al. 2024. Alibaba HPN: A Data Center
Network for Large Language Model Training. In Proceedings of ACM SIGCOMM.
Yanyuan Qin, Subhabrata Sen, and Bing Wang. 2019. ABR Streaming with
Separate Audio and Video Tracks: Measurements and Best Practices. In Proceed-
ings of ACM International Conference on Emerging Networking Experiments And
Technologies (CONEXT).

Eric D Ragan, Hye-Chung Kum, Gurudev Ilangovan, and Han Wang. 2018.
Balancing Privacy and Information Disclosure in Interactive Record Linkage
With Visual Masking. In Proceedings of ACM Conference on Human Factors in
Computing Systems (CHI). https://doi.org/10.1145/3173574.3173900

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-
Yan Liu. 2019. FastSpeech: Fast, Robust and Controllable Text to Speech. In
Proceedings of Conference on Neural Information Processing Systems (NeurIPS).
Charlie F Ruan, Yucheng Qin, Xun Zhou, Ruihang Lai, Hongyi Jin, Yixin Dong,
Bohan Hou, Meng-Shiun Yu, Yiyan Zhai, Sudeep Agarwal, et al. 2024. WebLLM:
A High-Performance In-Browser LLM Inference Engine. https://arxiv.org/abs/
2412.15803. [accessed on 09/30/2025].

Rusty Russell. [n. d.]. iptables - administration tool for IPv4 packet filtering and
NAT.

Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM Rezaul Karim. 2024. Extend-
ing the Frontier of ChatGPT: Code Generation and Debugging. In Proceedings
of International Conference on Electrical, Computer and Energy Technologies
(ICECET). https://ieeexplore.ieee.org/abstract/document/10698405

Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. 2003.
RTP: A Transport Protocol for Real-Time Applications. RFC 3550. https://rfc-
editor.org/rfc/rfc3550.txt [accessed on 09/30/2025].

[accessed on

[accessed on

https://doi.org/10.1016/j.diin.2015.09.002
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://doi.org/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3636534.3690682
https://doi.org/10.1109/IWQoS.2017.7969110
https://doi.org/10.1109/IWQoS.2017.7969110
https://www.computer.org/csdl/proceedings-article/icse/2025/056900a204/215aWCaXlSg
https://www.computer.org/csdl/proceedings-article/icse/2025/056900a204/215aWCaXlSg
https://doi.org/10.1145/3427228.3427250
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://doi.org/10.1145/3626786
https://doi.org/10.1145/3626786
https://www.rfc-editor.org/rfc/rfc5766
https://dl.acm.org/doi/abs/10.1145/3674805.3690758
https://dl.acm.org/doi/abs/10.1145/3674805.3690758
https://doi.org/10.1016/j.comcom.2010.04.029
https://doi.org/10.1016/j.comcom.2010.04.029
https://www.maxmind.com/en/home
https://www.rfc-editor.org/info/rfc1546
https://engineering.fb.com/2024/06/13/web/mlow-metas-low-bitrate-audio-codec/
https://engineering.fb.com/2024/06/13/web/mlow-metas-low-bitrate-audio-codec/
https://www.instagram.com/
https://about.fb.com/news/2025/04/introducing-meta-ai-app-new-way-access-ai-assistant/
https://about.fb.com/news/2025/04/introducing-meta-ai-app-new-way-access-ai-assistant/
https://www.messenger.com/
https://whatsapp.com/
 https://ai.meta.com/blog/llama-4-multimodal-intelligence/
 https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://altvr.com/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://copilot.microsoft.com/
https://www.skype.com/en/
https://arxiv.org/abs/2303.08774
https://openai.com/
https://arxiv.org/abs/2410.21276
https://openai.com/index/chatgpt/
https://dl.acm.org/doi/10.1145/3641554.3701974
https://dl.acm.org/doi/10.1145/3641554.3701974
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/ATNAC.2018.8615445
https://www.sciencedirect.com/science/article/pii/S2667295222000393
https://www.sciencedirect.com/science/article/pii/S2667295222000393
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://doi.org/10.1145/3173574.3173900
https://arxiv.org/abs/2412.15803
https://arxiv.org/abs/2412.15803
https://ieeexplore.ieee.org/abstract/document/10698405
https://rfc-editor.org/rfc/rfc3550.txt
https://rfc-editor.org/rfc/rfc3550.txt

IMC ’25, October 28-31, 2025, Madison, W1, USA

[100] William Seymour, Xiao Zhan, Mark Coté, and Jose Such. 2023. A Systematic

Review of Ethical Concerns with Voice Assistants. In Proceedings of AAAI/ACM
Conference on Al Ethics, and Society. https://doi.org/10.1145/3600211.3604679
Taveesh Sharma, Tarun Mangla, Arpit Gupta, Junchen Jiang, and Nick Feamster.
2023. Estimating WebRTC Video QoE Metrics Without Using Application
Headers. In Proceedings of ACM IMC. https://doi.org/10.1145/3618257.3624828
Yaron Sheffer, P Saint-Andre, and T Fossati. 2022. RFC 9325: Recommendations
for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS). https://www.rfc-editor.org/rfc/rfc9325.html. [accessed on
09/30/2025].

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang,
Christopher Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gon-
zalez, and Ion Stoica. 2024. S-LoRA: Serving Thousands of Concurrent LoRA
Adapters. https://arxiv.org/abs/2311.03285. [accessed on 09/30/2025].

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi
Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-Throughput Generative Inference of Large Language Models With a Single
GPU. In Proceedings of International Conference on Machine Learning (ICML).
https://proceedings.mlr.press/v202/sheng23a.html

C Shubha, SA Sushma, and KH Asha. 2019. Traffic Analysis of WhatsApp Calls.
In Proceedings of International Conference on Advances in Information Technology
(ICAIT). https://doi.org/10.1109/ICAIT47043.2019.8987315

Abigale Stang], Kristina Shiroma, Nathan Davis, Bo Xie, Kenneth R Fleischmann,
Leah Findlater, and Danna Gurari. 2022. Privacy Concerns for Visual Assistance
Technologies. ACM Transactions on Accessible Computing (TACCESS) 15 (2022),
1-43. https://doi.org/10.1145/3517384

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and Efficient Foundation Language Models.
https://arxiv.org/pdf/2302.13971. [accessed on 09/30/2025].

[108] Jean-Marc Valin and Cary Bran. 2016. RFC7874: WebRTC Audio Codec and Pro-

cessing Requirements. https://datatracker.ietf.org/doc/html/rfc7874. [accessed
on 09/30/2025].

[109] Jean-Marc Valin, Koen Vos, and Tim Terriberry. 2012. Definition of the Opus

Audio Codec. RFC 6716. https://rfc-editor.org/rfc/rfc6716.txt [accessed on
09/30/2025].

Matteo Varvello, Hyunseok Chang, and Yasir Zaki. 2022. Performance Char-
acterization of Videoconferencing in the Wild. In Proceedings of ACM IMC.
https://doi.org/10.1145/3517745.3561442

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

==
jergyen
&

) L=t

Ruizhi Cheng, Surendra Pathak, Guowu Xie, Matteo Varvello, Songging Chen, and Bo Han

You Need. In Proceedings of Conference on Neural Information Processing Systems
(NeurIPS).

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun
Li, Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. Autodroid:
LLM-Powered Task Automation in Android. In Proceedings of ACM Annual
International Conference on Mobile Computing and Networking (MobiCom). https:
//dl.acm.org/doi/10.1145/3636534.3649379

Wireshark. 1998. https://www.wireshark.org/. [accessed on 09/30/2025].

Nan Wu, Ruizhi Cheng, Songqing Chen, and Bo Han. 2025. PIPE: Privacy-
preserving 6DoF Pose Estimation for Immersive Applications. In Proceedings
of ACM Conference on Embedded Networked Sensor Systems (SenSys). https:
//doi.org/10.1145/3715014.3722069

Fuman Xie, Yanjun Zhang, Chuan Yan, Suwan Li, Lei Bu, Kai Chen, Zi Huang,
and Guangdong Bai. 2022. Scrutinizing Privacy Policy Compliance of Virtual
Personal Assistant Apps. In Proceedings of IEEE/ACM International Conference
on Automated Software Engineering. https://doi.org/10.1145/3551349.3560416
Xiaokun Xu and Mark Claypool. 2022. Measurement of Cloud-based Game
Streaming System Response to Competing TCP Cubic or TCP BBR Flows. In
Proceedings of ACM IMC. https://doi.org/10.1145/3517745.3561464

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2021. Ubar: Towards Fully End-to-
End Task-Oriented Dialog System With GPT-2. In Proceedings of AAAI Confer-
ence on Artificial Intelligence. https://doi.org/10.1609/aaai.v35i16.17674

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang,
Kuntai Du, Shan Lu, and Junchen Jiang. 2025. CacheBlend: Fast Large Language
Model Serving for RAG With Cached Knowledge Fusion. In Proceedings of
European Conference on Computer Systems (EuroSys). https://doi.org/10.1145/
3689031.3696098

Dong Yu and Lin Deng. 2016. Automatic Speech Recognition. Vol. 1. Springer.
Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A Distributed Serving System for Transformer-Based
Generative Models. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). https://www.usenix.org/conference/osdi22/
presentation/yu

Zapier. 2025. The best large language models (LLMs) in 2025. https://zapier.
com/blog/best-1lm/. [accessed on 09/30/2025].

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu,

Xin Jin, and Hao Zhang. 2024. DistServe: Disa%gregatin Prefill and Decoding for
Goodput-Optimized Large Language Model Serving. In Proceedings of USENIX

Symposium on Operating Systems Design and Implementation (OSDI). https:
//www.usenix.org/conference/osdi24/presentation/zhong-yinmin

https://doi.org/10.1145/3600211.3604679
https://doi.org/10.1145/3618257.3624828
https://www.rfc-editor.org/rfc/rfc9325.html
https://arxiv.org/abs/2311.03285
https://proceedings.mlr.press/v202/sheng23a.html
https://doi.org/10.1109/ICAIT47043.2019.8987315
https://doi.org/10.1145/3517384
https://datatracker.ietf.org/doc/html/rfc7874
https://rfc-editor.org/rfc/rfc6716.txt
https://doi.org/10.1145/3517745.3561442
https://dl.acm.org/doi/10.1145/3636534.3649379
https://dl.acm.org/doi/10.1145/3636534.3649379
https://www.wireshark.org/
https://doi.org/10.1145/3715014.3722069
https://doi.org/10.1145/3715014.3722069
https://doi.org/10.1145/3551349.3560416
https://doi.org/10.1145/3517745.3561464
https://doi.org/10.1609/aaai.v35i16.17674
https://doi.org/10.1145/3689031.3696098
https://doi.org/10.1145/3689031.3696098
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://zapier.com/blog/best-llm/
https://zapier.com/blog/best-llm/
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

Hello, GenAl? Dissecting Human to Generative Al Calling

Appendix
A Ethics

This work does not raise any ethical issues.

B Automated Testing Tool for Measuring Call
Setup Time

This section describes our method for measuring call setup time (§4.4).
A key challenge in this measurement is that applications do not
explicitly expose when they are ready to accept user input. As a re-
sult, we must probe this readiness indirectly. Our goal is to identify
the earliest point when user input could be successfully processed
after call initiation. To achieve this, we design a probing workflow
that gradually adjusts the timing of the first input query. To enable
large-scale automated experiments, we develop an Android-based
testing tool with the following three capabilities: (1) automatically
pressing the button to initiate a call, (2) waiting for a configurable
duration, and (3) playing a pre-recorded audio query. By varying the
wait duration in step (2), we can probe when the system becomes
ready to accept input.

We detect whether the GenAl calling application has accepted
the query and given the response by monitoring the network traffic
because if the application generates a response, we can detect a
corresponding increase in downlink traffic, as playback of the Al-
generated audio triggers additional network activity (see Figure 3).
We validate this detection method by recording the experiments
and manually verifying the accuracy of response detection.

In practice, we observe that the earliest timing that consistently
triggers a successful response remains stable across repeated trials
conducted within a short time window (e.g., five minutes). To ensure
measurement accuracy, we perform pre-experiments by repeating
the probing process multiple times. Once the variation of call setup
times converges to within 100 ms across five successful sessions,
we proceed with data collection for the next five-minute window.

We repeat this procedure at different times of day over multiple
days. The variation in the call setup times reported in Figure 6
comes from results captured at different times. We hypothesize that
this variability may result from fluctuating server-side conditions,
such as increased server load or network congestion during peak
usage periods compared to off-peak times, such as late at night.

C Queries for Evaluating TTFT Optimization

This section presents the short query and long query we designed
to evaluate whether the studied applications apply optimizations
to reduce TTFT (§4.4). Both queries ask the GenAl to write an
eight-hundred-word essay, which we determine to be the longest
response length that all tested platforms can support. This ensures

IMC ’25, October 28-31, 2025, Madison, W1, USA

that the task is sufficiently challenging while keeping the evaluation
fair across all platforms. The full content of the short query and
long query is provided below.

Short Query:

Write an eight-hundred-word essay that compares three
major interpretability techniques for large language
models, which are feature attribution, mechanistic in-
terpretability, and behavioral probing.
Long Query:

Write an eight-hundred-word essay that compares three
major interpretability techniques for large language
models, which are feature attribution, mechanistic in-
terpretability, and behavioral probing. I will provide
some information related to this topic. Interpreting how
large language models work is essential for improv-
ing their transparency, reliability, and safety. Among
the many techniques proposed, three stand out as par-
ticularly influential: feature attribution, mechanistic
interpretability, and behavioral probing. Feature at-
tribution methods attempt to identify which parts of
the input most influenced the model’s prediction. Tools
like saliency maps or attention visualizations fall into
this category. They are intuitive and often used for de-
bugging, but can be unstable and may not reflect true
causality. Mechanistic interpretability takes a deeper
approach by analyzing internal components such as
neurons or circuits. Techniques like activation patching
or circuit tracing can provide detailed insights, though
they are often resource-intensive and difficult to scale.
Behavioral probing evaluates how models respond to
controlled input changes or activation modifications. It
focuses on observable behavior and is useful for uncov-
ering latent knowledge or biases. However, it doesn’t
always explain why those behaviors emerge. Each of
these techniques offers unique advantages and limita-
tions. Together, they help researchers develop a more
comprehensive understanding of how LLMs operate.
Now, give me the essay that I mentioned to you with
eight hundred words.

The long query repeats the same initial task description as the
short query but adds additional background and context before
asking the model to proceed. This design enables us to isolate
whether the system waits for the entire input or begins processing
as soon as the task is recognizable, thereby revealing potential
optimizations aimed at reducing TTFT for long queries.

	Abstract
	1 Introduction
	2 Background
	3 Testbed & Data Collection
	4 Measurement Results
	4.1 Workflow Analysis
	4.2 Network Infrastructure
	4.3 Transmission Behavior
	4.4 Latency Analysis
	4.5 Network Disruptions
	4.6 Comparison with Voice Assistants

	5 Discussion
	6 Related Work
	7 Conclusion
	References
	A Ethics
	B Automated Testing Tool for Measuring Call Setup Time
	C Queries for Evaluating TTFT Optimization

